

Orientierende Baugrund- und Altlastenuntersuchung in 53175 Bonn, Kennedyallee 62-70 (v3)

Dortmund, 13.06.2019 (redaktionell ergänzt am 10.11.20)

Auftraggeber:

GERCHGROUP AG (Marathon Einkaufs-GbR Jackie K.) Cecilienpalais | Emmericher Straße 26 40474 Düsseldorf

Fon: 0231 9453808-0

Fax: 0231 9453808-9

info@igc-geo.de

Inhaltsverzeichnis

Seite 1. Vorbemerkungen 4 1.1 Auftrag und Aufgabenstellung 4 1.2 Vorliegende Unterlagen 4 1.3 5 Bauvorhaben 1.4 Standortbeschreibung 6 2. Baugrunduntersuchung 6 2.1 Geländearbeiten/Laborversuche 6 2.2 7 Untergrundverhältnisse 7 2.2.1 Regionale Geologie 7 2.2.2 Baugrundschichtung 2.2.3 Grundwasser 8 2.3 9 Bodenmechanische Eigenschaften und Kennwerte 3. Bautechnische Folgerungen **10** 3.1 Bodenklassen gem. DIN 18300, Verwendung des Aushubmaterials 10 3.2 10 Bauzeitliche Wasserhaltung 3.3 10 Abdichtung des Bauwerkes 3.4 11 Gründungsart und Gründungstiefe 3.5 Erforderliche Maßnahmen/ Hinweise 11 3.6 Belastung des Untergrundes, Setzungsverhalten (Vorkalkulation) 12 3.7 Angaben zur Baugrube / Verfüllung der Arbeitsräume 13 3.8 Befestigte Verkehrsflächen 13 3.9 Bergbauliche Einwirkungen/ Kampfmittel 13 3.10 14 Erdbebenzone 3.11 Abnahmen und Kontrollen 14

4.	Erku	indung potenzieller Bodenverunreinigungen	15
	4.1	Chemische Untersuchungen	15
	4.1.1	Ergebnisse der Untersuchungen gemäß LAGA-Richtlinie M 20	16
	4.2	Abfalltechnische Bewertung untersuchter Böden	18
	4.3	Altlastenverdachtsfläche Ziffer 8018-091	18
	4.4	Bewertung gemäß Bunden-Bodenschutz- und Altlastenverordnung	19
5.	Zusa	mmenfassung und Empfehlungen	20
6. 1	Hinw	veise	21
Anla	agen		
Anla	ige 1a	Übersichtslageplan	
Anla	ige 1	Lageplan mit Lage der Bohransatzstellen	
Anla	ige 2a	Profilschnitt A-A´	
Anla	ige 2b	Profilschnitt B-B'	
Anla	ige 2c	Profilschnitt C-C'	
Anla	ige 2d	Darstellung der Schichtenprofile (Kleinrammbohrungen/ Rammsond	ierungen)
Anla	ige 3	Ergebnisse der chemischen Laborversuche	

1. Vorbemerkungen

1.1 Auftrag und Aufgabenstellung

Die GERCHGROUP AG (Beauftragung durch Marathon Einkaufs-GbR Jackie K.), Cecilienpalais | Emmericher Straße 26 40474 Düsseldorf plant die Errichtung von Wohn- und Gewerbebauten auf dem Grundstück Kennedyallee 62-70 in 53175 Bonn.

Das Büro IGC GEOCONSULT GmbH wurde mit Schreiben vom 31.01.2019 seitens der Bauherrin beauftragt, für die Neubaumaßnahme eine orientierende Bodenuntersuchung zu erstellen.

Neben der allgemeinen bodenmechanischen Beurteilung des Untergrundes sollten auch die chemischen Eigenschaften abzufahrender Böden hinsichtlich abfallrechtlicher Einstufung (LAGA M 20) bestimmt werden. Zusätzlich werden die Böden einer Beurteilung nach Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) im Wirkungspfad Boden-Mensch unterzogen.

1.2 Vorliegende Unterlagen

Folgende relevante Unterlagen wurden vom Bauherrn zur Verfügung gestellt:

- Planungsvariante Kennedyallee Bonn, Variante 8 im Maßstab 1 : 1.000, GERCHGROUP AG, meyerschmitzmorkramer (23.04.2018)
- Planungsvariante Kennedyallee Bonn, Variante 8 Abstandflächen im Maßstab 1 : 1.000, GERCHGROUP AG, meyerschmitzmorkramer (23.04.2018)
- Planungsvariante Kennedyallee Bonn, Variante 8 Flächenaufstellung im Maßstab 1 : 1.000, GERCHGROUP AG, meyerschmitzmorkramer (23.04.2018)
- Auszug aus dem Liegenschaftskataster (17BV-D0084) im Maßstab 1 : 1.000; Flurstück: 656; Flur: 13; Gemarkung: Plittersdorf; Bundesstadt Bonn, Katasteramt; 14.08.2017
- Erstbewertung im Sinne einer Due Diligence Boden und Grundwasser (Phase I) (Stellungnahme); Übersichtsplan Kennedyallee 62-72 mit Kennzeichnung der unterkellerten Bereiche und Verdachtsareale; Maßstab: 1:1.000; TÜV Rheinland Industrie Service GmbH, Am Grauen Stein, 51105 Köln; 10.04.2018

1.3 Bauvorhaben

Nach derzeitigem Planungsstand sollen auf dem Grundstück insgesamt 13 neue 3-7 geschossige Wohn- und Gewerbebauten errichtet werden.

Die Grundstücksfläche wird auf den Planunterlagen mit ca. 31.980 m² angegeben.

Der bebaute Bereich soll vollständig (auch zwischen den Gebäuden) mit einer teilweise mehrgeschossigen Tiefgarage unterbaut werden (BGF UG = 27.090 m²).

Die geplanten Höhen (OKFF) sind noch nicht festgelegt. Es wird davon ausgegangen, dass diese sich am aktuellen Geländeniveau orientieren.

Abb.: Baufeld (Altbestand wird abgerissen)

1.4 Standortbeschreibung

Das Baugrundstück mit dem Gebäudekomplex befindet sich im Stadtgebiet Plittersdorf der Stadt Bonn.

Es wird im Nordwesten durch die Straße "Kennedyallee" und im Südosten durch die Straße "Ahrstraße" abgegrenzt. Unmittelbar an der westlichen und östlichen Grundstückgrenze ist Wohnbebauung angesiedelt. Ca. 1 km östlich vom Grundstück verläuft der Rhein.

Der derzeit noch genutzte mehrgeschossige Bürokomplex (teilunterkellert / Tiefgarage) wird im Vorfeld der Baumaßnahme vollständig zurückgebaut.

Das Baufeld ist relativ eben ausgebildet und liegt auf einer Höhenkote bei ca. 57,50 mNN (Tiefgaragenebene) und 60,00 mNN (Strassenniveau).

2. Baugrunduntersuchung

2.1. Geländearbeiten/Laborversuche

Zur Erschließung der geologischen und hydrologischen Verhältnisse wurden zwischen dem 06.02.2019 und 08.02.2019 im Rahmen der Baugrunderkundung 14 Kleinrammbohrungen (RKS 1 – RKS 14) bis in eine Tiefe von max. 2,6 m unter Geländeoberkante GOK abgeteuft. Ergänzt wurden diese durch acht schwere Rammsondierungen (RS 1, RS 3, RS 5, RS 7, RS 8, RS9, RS 13, RS 14) bis max. 2,3 m unter GOK. Die geplante Endteufe von 7 m – 10 m konnte aufgrund des hohen Eindringwiderstandes (anstehende Kiesschichten) nicht erreicht werden.

Die Lage der Aufschlusspunkte ist der Anlage 1 zu entnehmen. Die Ergebnisse der Kleinrammbohrungen und der Rammsondierungen wurden in Schichtenprofilen in zeichnerischer Darstellung in der Anlage 2 dargestellt.

Im ingenieurgeologischen Labor erfolgte die bodenmechanische Beurteilung der entnommenen Bodenproben.

Zur abfallrechtlichen Bestimmung der abzufahrenden Böden wurden sieben Mischproben gebildet und jeweils einer Deklarationsanalytik gemäss LAGA M 20 durchgeführt (s. Kap. 4).

2.2 Untergrundverhältnisse

2.2.1 Regionale Geologie

Der anstehende Untergrund in der Umgebung des Untersuchungsgebietes wird in erster Linie von quartären Flussaufschüttungen der Niederterrasse des Rheins (Diluvium), bestehend aus "Schluffen mit durchlässigen Sand- und Kiesuntergrund", gebildet.

Die ca. 30 m mächtigen Sedimente bestehen überwiegend im oberen Meter aus stark lehmigen Sanden bzw. stark sandigen Lehmen. Im Hangenden folgen stark kalkige Sande.

2.2.2 Baugrundschichtung

Auf Grundlage der durchgeführten Geländeaufschlüsse stellt sich der Bodenaufbau im Untersuchungsgebiet wie folgt dar:

Auffüllungen (bereichsweise)

Bei RKS 1, RKS 2, RKS 5 und RKS 8 wurden künstliche Anschüttungen bis in Tiefen zwischen 0,2 m und 1,3 m unter aktuellem Gelände durchteuft. Hierbei handelt es sich um umgelagerte natürliche Böden (sandige Schluffe, durchwurzelt), bereichsweise mit Gesteinsbruchstücken und Bauschuttresten. Die Anschüttungen sind locker gelagert, bzw. weisen eine weiche bis steife Konsistenz auf.

Schluffe, sandig (bereichsweise)

Bei RKS 2, RKS 8, RKS 10 und RKS 13 wurden bis zu einer maximalen Tiefe von 0,8 m unter Gelände bindige Bodenpartien als gewachsener Boden angetroffen. Hierbei handelt es sich um sandige, schwach kiesige Schluffe in überwiegend weicher Konsistenz.

Sande, kiesig

Der mit den durchgeführten Kleinrammbohrungen erkundete Untergrund wird zwischen 0.8 m und der maximal erbohrten Endteufe von $\geq 2.5 \text{ m}$ unter Ansatzpunkthöhe durch *kiesige Sande* gebildet. Die Sande sind dicht bis mitteldicht gelagert.

Aufgrund des hohen Bohrwiderstandes konnte eine Teufe von 7 m / 10 m unter GOK bei keiner Rammsondierung erreicht werden.

Die Schlagzahlen der schweren Rammsonde liegen im oberen Schichthorizont (Schluffe) i.M. zwischen 5 - 10 Schlägen pro 10 cm Eindringtiefe. In den anstehenden Sanden (Gründungswiderlager ab 2 m Tiefe) i.M. zwischen 30 und ≥ 100 Schlägen.

Die Ergebnisse der Kleinrammbohrungen und der Rammsondierungen wurden in Schichtenprofilen und Profilschnitten in zeichnerischen Darstellungen in der Anlage 2 dargestellt.

2.2.3 Grundwasser

Zwischen dem 06.02.2019 und 08.02.2019 wurde in den durchgeführten Sondierungen kein Grund- bzw. Schichtenwasser angetroffen.

In unmittelbarer Nähe des Untersuchungsgebietes, 100 m westlich, Kreuzung Kennedyallee / Frankenstr. (~ Rechtswert 2581200; ~ Hochwert 5618980) befindet sich die Grundwassermessstelle 07656713 (GOK der Messstelle: 61,64 m NN).

Datenquelle: https://www.elwasweb.nrw.de/elwas-web/index.jsf#.

Der <u>höchste</u> gemessene Grundwasserstand (12/1993) der Messstelle gemäß *elwasweb.nrw* beträgt 49,87 m NN und somit 11,77 m unterhalb der Geländeoberkante GOK.

Der höchste Grundwasserstand (HGW) ist dementsprechend bei 11,50 m unter Geländeoberkante bzw. bei 50,00 mNN anzusetzen.

2.3. Bodenmechanischen Eigenschaften und Kennwerte

Die bodenphysikalischen Eigenschaften bzw. die mittleren Bodenkennwerte der angetroffenen Bodenschichten können wie folgt beschrieben bzw. angesetzt werden:

Anschüttungen

Umgelagerte natürliche Böden (Schluff, sandig, schwach kiesig), bereichsweise Bauschuttreste, erdfeucht, weich, der Bodengruppe UL, GU zuzuordnen und als sehr frostempfindlich einzustufen.

Wichte des feuchten Bodens γ	19,0 - 20,0	kN/m³
Wichte unter Auftrieb γ'	9,0 - 10,0	kN/m³
Kohäsion c'	0-5	kN/m²
Reibungswinkel φ'	22,5 - 27,5	0
Steifemodul ES	2 - 10	MN/m^2

Schluffe

sandig, schwach kiesig, erdfeucht-feucht, weich, der Bodengruppe UL, GU zuzuordnen und als sehr frostempfindlich einzustufen.

Wichte des feuchten Bodens γ	19,0 - 20,0	kN/m³
Wichte unter Auftrieb γ'	9,0 - 10,0	kN/m³
Kohäsion c'	5-10	kN/m²
Reibungswinkel φ'	22,5 - 27,5	0
Steifemodul ES	2 - 10	MN/m²

Sande

kiesig, erdfeucht, dicht bis sehr dicht, der Bodengruppe SW, SI zuzuordnen und als nicht frostempfindlich einzustufen.

Wichte des feuchten Bodens γ	19,0 - 21,0	kN/m³
Wichte unter Auftrieb γ'	10,0 - 12,0	kN/m³
Kohäsion c'	0-2	kN/m²
Reibungswinkel φ'	32,5-37,5	0
Steifemodul Es	100-150	MN/m²

3. Bautechnische Folgerungen

3.1. Bodenklassen gem. DIN 18300, Verwendung des Aushubmaterials

Gemäß DIN 18300 können die angetroffenen Bodenhorizonte folgenden Bodenklassen zugeordnet werden:

Auffüllungen: Bodenklasse 3 - 4

Schluff: Bodenklasse 3-4, bei Aufweichungen KL. 2

Sand, stark kiesig: Bodenklasse 3 - 5

3.2 Bauzeitliche Wasserhaltung

Auf Grundlage der durchgeführten Geländeerkundungen und der herangezogenen Informationen der Grundwassermessstelle (07656713) ist der Grundwasserstand (HGW) deutlich unterhalb der angenommenen Gründungssohlen anzusetzen und hat dementsprechend keine relevanten Einflüsse auf das Bauvorhaben.

Anfallende Oberflächenwässer können über eine offene Wasserhaltung abgeführt werden.

3.3 Abdichtung des Bauwerkes

Das Bauwerk sollte gegen Bodenfeuchte (W1-E) abgedichtet werden. Die weiteren Vorgaben der DIN 18533 sind zu beachten.

3.4 Gründungsart und Gründungstiefe

Auf Grundlage der vorliegenden Untersuchungsergebnisse ergeben sich folgende grundsätzliche Aussagen zur Eignung des Baugrundes, wobei derzeit keine detaillierten Lastangaben und Anforderungen für den Neubau vorliegen.

Nach den bestehenden Planungsunterlagen und den Ergebnissen der Baugrundaufschlüsse kommt die Gründungssohle bei einer geplanten einfachen Unterkellerung im Regelfall in den dicht gelagerten quartären kiesigen Sanden zum Liegen.

Die oberflächennahen Auffüllungen und Schluffe sind für die Gründung nicht relevant. Die Auffüllungen sind für den Abtrag von hohen Lasten aufgrund der geringen Lagerungsdichte und der damit verbundenen Kompressibilität nicht geeignet. Die Schicht muss in diesem Bereich verbessert oder ausgetauscht werden. Alternativ kann die Last in tiefere Bereiche abgetragen werden.

Die sandigen Kiese sind aufgrund Ihrer hohen Lagerungsdichte auch für den Abtrag von hohen Lasten gut geeignet.

Nach den vorliegenden Daten zu Gründung, Bauwerk und Baugrund ist das Bauwerk nach Handbuch EC 7 in die geotechnische Kategorie GK 2 einzuordnen.

Die Gründungssohle für die geplanten Gebäude wird bei der geplanten max. dreigeschossigen Tiefgarage überwiegend in den Sanden liegen. Der Bemessungswasserstand für das fertige Bauwerk liegt deutlich unter der Gründungssohle für das UG.

Aus den vorgenannten Gründen ist es möglich, die ankommenden Lasten über Einzel- und Streifenfundamente, als auch über eine tragende Bodenplatte abzuführen.

3.5 Erforderliche Maßnahmen/Hinweise

Organische Böden, bindige Bodenpartien (Schluffe) und Anschüttungen sind aufgrund Ihrer geringen Tragfähigkeit vollständig auszuräumen.

Das Erdplanum (anstehender Sand) ist intensiv nachzuverdichten.

3.6 Belastung des Untergrundes, Setzungsverhalten (Vorkalkulation)

Unter Beachtung der im Kap. 3.6 aufgeführten Maßnahmen kann für <u>Vorkalkulationen</u> ein Bettungsmodul von:

 $k_s = 30 \text{ MN/m}^3$

angesetzt werden.

Es ist eine maximale Bodenpressung von:

 $\sigma_{zul} = 300 \text{ kN/m}^2 \text{ (aufnehmbarer Sohldruck)}$

bzw.

 $\sigma_{R,d} = 420 \text{ kN/m}^2$ (Bemessung des Sohlwiderstandes) anzusetzen.

Nach Vorlage der endgültigen Planung können bauvorhabenbezogene Bodenpressungen angegeben werden

3.7 Angaben zur Baugrube/ Verfüllung der Arbeitsräume

Böschungen von Gruben und Gräben dürfen nur bis zu einer Tiefe von maximal 1,25 m gemäß DIN 4124 senkrecht hergestellt werden. Höhere Böschungen sind mit $\beta \leq 45^{\circ}$ auszuführen. Diese Angaben gelten ausschließlich für während des Bauzustandes gegen Witterungseinflüsse dauerhaft geschützte Böschungen und bei Einhaltung der Bedingungen gemäß DIN 4124.

Der Aushub erfolgt überwiegend in den Bodenklassen 3-5. *Bindige* Böden können <u>nicht</u> für Hinterfüllungen und Grabenfüllungen eingesetzt werden.

Um Auflockerungen des Planums möglichst gering zu halten, ist der Aushub des Planums abschnittsweise herzustellen. Das Erdplanum darf nicht befahren werden und es darf nur rückschreitend gearbeitet werden.

3.8 Befestigte Verkehrsflächen

Befestigte Verkehrsflächen (Parkplätze, Zu- und Umfahrten) sind entsprechend den Vorgaben der RstO (Richtlinien für die Standardisierung des Oberbaues von Verkehrsflächen), der ZTVE-StB (Zusätzliche Technische Vertragsbedingungen und Richtlinien für Erdarbeiten im Straßenbau) sowie der ZTVT-StB (Zusätzliche Technische Vorschriften für Tragschichten im Straßenbau) herzustellen.

Das Projektgebiet befindet sich in der Frosteinwirkungszone I.

Auf dem Planum (Untergrund bzw. Unterbau) unterhalb des Fahrbahnoberbaues wird gem. RstO ein Verformungsmodul $E_{v2} \ge 45$ MPa gefordert, welches mittels statischer Lastplattendruckversuche nachzuweisen ist. In Bereichen, in denen trotz Nachverdichtung die o.g. Werte nicht zu erreichen sind, ist ein Bodenaustausch in einer Stärke zwischen 0,2 m und 0,4 m mit abgestuften Schottermateralien auszuführen.

Die in den geltenden Richtlinien und Verordnungen bzw. spezifischen Baubeschreibungen geforderten Verformungsmoduln sind per statischer Lastplattendruckversuche vor Aufbringen des Fahrbahnoberbaus nachzuweisen.

3.9 Bergbauliche Einwirkungen/Kampfmittel

Aussagen über bergbauliche Aktivitäten sowie Kampfmittel, die Auswirkungen auf das geplante Bauvorhaben haben können, werden im Rahmen dieses Gutachtens nicht getätigt.

Informationen hierüber sollten durch den Bauherrn bei den zuständigen Behörden (z.B. Bezirksregierung) angefordert.

3.10 Erdbebenzone

Gemäß Karte der Erbebenzonen und geologischen Untergrundklassen der Bundesrepublik Deutschland (Nordrhein-Westfalen, 1: 350.000) liegt das geplante Bauvorhaben in:

Erdbebenzone 1

Untergrundklasse R (Übergangsbereich zu Untergrundklasse T)

3.11 Abnahmen und Kontrollen

Für den Aushub und die Analyse bzw. Verwertung belasteter Böden wird eine fachgutachterliche Begleitung empfohlen.

Der Zustand der Gründungssohlen nach dem Aushub und vor Einbau einer Sauberkeitsschicht oder eines Bodenaustausches ist fachgutachterlich abzunehmen.

4. Erkundung potenzieller Bodenverunreinigungen

4.1 Chemische Untersuchungen

Neben der baugrundtechnischen Bewertung des Untersuchungsgrundstückes wurden die Bodenaufschlüsse durch Kleinrammbohrungen zur orientierenden Bewertung des anstehenden Bodens sowie des voraussichtlich anfallenden Bodenaushubs herangezogen.

Während der Bohrarbeiten wurde das Bohrgut organoleptisch geprüft. In keinem Fall ergaben sich signifikante Hinweise auf das Vorliegen von Bodenverunreinigungen. Dem Bohrgut der Sondierungen wurden insgesamt 32 Bodenproben entnommen und der GBA Gesellschaft für Bioanalytik mbh, Gelsenkirchen, überstellt.

Aufgrund fehlender Hinweise auf konkrete Bodenverunreinigungen, die zur Analyse an Einzelproben führen würden, wurden im Labor 3 Mischproben der *angefüllten* Materialien sowie 4 Proben des *gewachsenen* Bodens gebildet. Diese wurden wie folgt zusammengestellt:

Probe	aus Bohrungen	Entnahmetiefe (Maximalbereich) in m u. GOK	Geländebereich
MP 1	RKS 1/1; RKS 1/2	min. 0,2 – max. 1,3	Auffüllungsmaterial
MP 2	RKS 2/1; RKS 5/1	min. 0,0 - max. 0,7	Auffüllungsmaterial
MP 3	RKS 8/1; RKS 10/1	min. 0,0 - max. 0,3	Auffüllungsmaterial
MP 4	RKS 1/3; RKS 2/2	min. 0,7 – max. 2,6	Gewachsener Boden
MP 5	RKS 4/1; RKS 5/2; RKS 6/1	min. 0,24 – max. 2,1	Gewachsener Boden
MP 6	RKS 7/1; RKS 7/2; RKS 14/2	min. 0,23 – max. 2,0	Gewachsener Boden
MP 7	RKS 8/2; RKS 10/2; RKS 14/1	min. 0,23 – max. 2,5	Gewachsener Boden

Tab.: Zusammenstellung der Proben

An den Mischproben wurden jeweils Analysen gemäß Parameterumfang Boden der LAGA Richtlinie M 20^1 durchgeführt.

Die abfallrechtlichen Einstufungen der untersuchten Böden sind im Kapitel 4.2 zusammenfassend dargestellt. Die Bewertungen der untersuchten Böden nach Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) sind dem Kapitel 4.3 zu entnehmen.

¹ Bund/Länderarbeitsgemeinschaft Abfall (LAGA) (2003): Mitteilung 20: Anforderungen an die stoffliche Verwertung von mineralischen Abfällen. Technische Regeln. Allgemeiner Teil, Überarbeitung Endfassung; Stand: 06.11.2003.

4.1.1 Ergebnisse der Untersuchungen gem. LAGA-Richtlinie M 20

In den Tabellen auf den folgenden Seiten sind die an den sieben Mischproben ermittelten Schadstoffgehalte den entsprechenden Zuordnungswerten gem. LAGA-Boden 2004 gegenübergestellt.

								("Lehm/	Technische Regel Boden der LAGA M 20 ⁰⁾ , Zuord- nungswerte Feststoff						
Para- meter	Dim.	MP 1 ("Lehm/	MP 2 ("Lehm/	MP 3 ("Lehm/	MP 4 ("Sand")	MP 5 ("Sand")	MP 6 ("Sand")		Z0						
		Schluff")	Schluff")	Schluff")	(,, ,	(,, = /	(,, /	Schluff")	Sand	Lehm / Schluff	Ton)	Z0*	Z1	Z2	>Z2
TOC	Mas- se-%	0,7	1,3	0,6	0,2	0,3	0,1	0,3	0,5 (1,0) ⁾	0,5 (1,0)	0,5 (1,0)	0,5 (1,0)	1,5	5	
Cyani- de, gesamt	mg/kg TS	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	-	-	-	-	3	10	
EOX	mg/kg TS	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	1	1	1	1	3	10	
Arsen	mg/kg TS	7,4	7,2	7,1	6	7,9	3,3	7	10	15	20	15 ⁾	45	150	
Blei	mg/kg TS	20	30	25	7	5,3	3,5	10	40	70	100	140	210	700	
Cad- mium	mg/kg TS	0,3	0,35	0,26	<0,10	<0,10	<0,10	0,15	0,4	1	1,5	1)	3	10	
Chrom (ges.)	mg/kg TS	22	15	18	14	13	9	17	30	60	100	120	180	600	
Kupfer	mg/kg TS	11	14	9,6	7,4	4,8	4,3	8,5	20	40	60	80	120	400	
Nickel	mg/kg TS	21	17	20	20	18	14	23	15	50	70	100	150	500	
Thalli- um	mg/kg TS	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	0,4	0,7	1	0,7)	2,1	7	
Queck silber	mg/kg TS	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	<0,30	0,1	0,5	1	1	1,5	5	
Zink	mg/kg TS	58	75	50	27	55	15	37	60	150	200	300	450	1.500	
Koh- len- was- serstof- fe C10 - C21	mg/kg TS	<100	<100	<100	<100	<100	<100	<100	100	100	100	200	300	1000	
Koh- len- was- serstof- fe C10 - C40	mg/kg TS	<100	<100	<100	<100	<100	<100	<100	100	100	100	400	600	2000	
Ben- zo(a)- pyren	mg/kg TS	0,064	0,23	<0,050	<0,050	<0,050	<0,050	<0,050	0,3	0,3	0,3	0,3	0,9	3	

											7	Zuo echnisch		werte Fo Boden d		A M 20	
Para- meter	Dim.	MP 1 ("Lehm/ Schluff")	MP 2 ("Lehm/ Schluff")	MP 3 ("Lehm/ Schluff")	MP 4 ("Sand")	MP 5 ("Sand")	MP 6 ("Sand")	MP 7 ("Lehm/ Schluff")		Z0			7,	70	70		
		Scriidii)	Scribin)	Scribin)				Scriidii)	Sand	Lehm / Schluff	Ton	Z0*	Z1	Z2	>Z2		
PAK	mg/kg TS	<0,75	2	<0,75	n. n.	n. n.	n. n.	n. n.	3	3	3	3	3 (9)	30			
LHKW	mg/kg TS	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	1	1	1	1	1	1			
BTEX	mg/kg TS	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	1	1	1	1	1	1			
РСВ	mg/kg TS	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,05	0,05	0,05	0,1	0,15	0,5			

 $Tab.: Gegen\"{u}berstellung Schadstoffgehalte - Zuordnungswerte \textbf{Feststoff} \ (Tabelle \ II.1.2-2 + II.1.2-4)$

Para- meter	Dim.	MP 1 ("Lehm/ Schluff")	MP 2 ("Lehm/ Schluff")	MP 3 ("Lehm/ Schluff")	MP 4 ("Sand")	MP 5 ("Sand")	MP 6 ("Sand")	MP 7 ("Lehm/ Schluff")
pH- Wert	-	10,5	8	8,2	8,4	9,6	7,8	8,4
el. Leitfä- higkeit	μs/cm	175	106	83,5	87,1	130	84,9	71,8
Chlorid	mg/l	0,67	<0,60	<0,6	1,7	7,3	2,7	0,99
Sulfat	mg/l	18	1	<0,5	5,8	5,9	2,2	1,2
Cyanid (ge- samt)	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Pheno- lindex	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Arsen	μg/l	8,7	3,6	7,1	5,1	4,6	1,8	1,7
Blei	μg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cad- mium	μg/l	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3
Chrom (ge- samt)	μg/l	1,4	1,5	1,3	< 1,0	< 1,0	< 1,0	1,2
Kupfer	μg/l	17	3,4	2,0	< 1,0	1,6	1,5	1,2
Nickel	μg/l	2,2	1,2	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
Queck silber	μg/l	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Zink	μg/l	< 10,0	< 10,0	< 10,0	< 10,0	< 10,0	< 10,0	< 10,0

ZIIIN	•							
LAG Einstu		Z 1.2	Z 1.1	Z 1.1	Z 1.1	Z 1.2	Z 0	Z 0

 $Tab.: Gegen \"{u}berstellung Schadstoffgehalte} - Zuordnungswerte \ \textbf{Eluat} \ (Tabelle \ II. 1.2-3 + II. 1.2-5)$

Zuordnungswerte Eluat Technische Regel Boden der LAGA M 20									
Z0/Z0*	Z1.1	Z1.2	Z2	>Z2					
6,5- 9,5	6,5- 9,5	6-12	5,5-12						
250	250	1500	2000						
30	30	50	100 12)						
20	20	50	200						
5	5	10	20						
0,02	0,02	0,04	0,1						
14	14	20	60 ¹³⁾						
40	40	80	200						
1,5	1,5	3	6						
12,5	12,5	25	60						
20	20	60	100						
15	15	20	70						
<0,5	<0,5	1	2						
150	150	200	600						

4.2 Abfalltechnische Bewertung untersuchter Böden

Die Untersuchungsergebnisse der analysierten Mischproben sind auf Grundlage des Bewertungsmaßstabes LAGA TR Boden (2004) wie folgt zu bewerten:

Probe	Geländebereich	Ursachenparameter	Einstufung gemäß LAGA
MP1	Auffüllungsmaterial	TOC Feststoff; pH-Wert	Z 1.2
MP 2	Auffüllungsmaterial	TOC Feststoff	Z 1.1
MP 3	Auffüllungsmaterial	TOC Feststoff	Z 1.1
MP 4	Gewachsener Boden	Nickel Feststoff	Z 1.1
MP 5	Gewachsener Boden	Nickel Feststoff, pH-Wert	Z 1.2
MP 6	Gewachsener Boden		Z 0
MP 7	Gewachsener Boden		Z 0

Tab.: Resultierende Einbauklassen gem. LAGA TR Boden (2004)

4.3 Altlastenverdachtsfläche Ziffer 8018-091

Nach Angaben des Umweltamtes der Stadt Bonn (Schreiben vom 19.03.2018) ist:

"..das Grundstück Kennedyallee 62 – 72 / Ahrstr. 20 in 53175 Bonn von einer militärischen Altlast betroffen, die im Altlastenkataster der Bundesstadt Bonn unter der Ziffer 8018-091 erfasst ist. Bei dieser Altlast handelt es sich um das Lager II eines französischen Feld-Artillerie-Regimentes, das hier von 1921 bis ca. 1935 ansässig war.

Auf dem Grundstück befand sich neben einem Exerzierplatz ein Magazin und ein Schießstand. Ein von der ehemaligen militärischen Nutzung ausgehendes Gefährdungspotenzial ist nicht erkennbar..".

Die im Rahmen der vorliegenden Untersuchung durchgeführten rasterförmig angeordneten Bodenaufschlüsse ergaben keine Hinweise auf eine nachteilige Beeinträchtigung durch die militärische Nutzung.

4.4 Bewertung gemäß Bundes-Bodenschutz- und Altlastenverordnung

Zur Bewertung der Analyseergebnisse wird die dem Gesetz zum Schutz des Bodens (BBodSchG)² zugeordnete Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)³ herangezogen.

Es ist festzustellen, dass bei den Deklarationsanalysen an den 7 Mischproben *MP 1 bis MP 7*, die Prüfwerte des Wirkungspfades Boden – Mensch für alle vier Nutzungsarten ("Kinderspielflächen", "Wohngebiete", "Park-/Freizeitanlagen" sowie "Industrie- / Gewerbegrundstücke") jeweils eingehalten werden. Für Grundwassergefährdungen über den Wirkungspfad Boden – Grundwasser liegen zurzeit keine Hinweise vor; die untersuchten Metallgehalte im jeweiligen Eluat der Mischproben waren unauffällig.

Aus gutachterlicher Sicht sind auf Grundlage der BBodSchV keine weitergehenden Erkundungs- bzw. Bodensanierungsmaßnahmen erforderlich.

³ Bundesrepublik Deutschland (1999): Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV), vom 12.07.1999 (BGBl. 1999 I, S. 1554)

² Bundesrepublik Deutschland (1998): Gesetz zum Schutz vor schädlichen Bodenveränderungen und Sanierung von Altlasten (Bundes-Bodenschutzgesetz – BBodSchG), vom 17.03.1998 (BGBl. 1998 I, S. 502)

5. Zusammenfassung und Empfehlungen

Auf dem Grundstück in Bonn, Kennedyallee 62-70, ist die Errichtung eines Wohn- und Gewerbekomplexes mit teilweise mehrgeschossiger Unterkellerung geplant. Zur Erschließung der geologischen und hydrologischen Verhältnisse wurden im Rahmen der Baugrunderkundung 14 Kleinrammbohrungen und 8 Rammsondierungen mit der schweren Rammsonde abgeteuft.

Untergrund:

Unter einer geringmächtigen Deckschicht aus künstlichen Anschüttungen bzw. bindigen Böden besteht der Untergrund bis zur erbohrten Endteufe aus kiesigen Sanden.

Wasser:

Der höchste Grundwasserstand ist in einer Tiefe von ca. 11,5 m unterhalb der aktuellen Geländeoberkante anzusetzen.

Gründung:

Die Gründungsebene des geplanten Baukomplexes mit Tiefgeschoss kann grundsätzlich als tragfähig bezeichnet werden. Die Lastabtragung kann mittels einer Flachgründung über Streifen- bzw. Einzelfundamente oder über eine tragende Bodenplatte erfolgen.

Altlasten:

Auf Grundlage der durchgeführten Untersuchungen ist die Nutzung des Geländes als Wohngebiet/ Gewerbefläche laut BBodSchV zulässig. Nachteilige Beeinträchtigungen des Bodens durch die militärische Nutzung (Altlast 8018-091) konnten nicht festgestellt werden.

Entsorgung:

Die angetroffenen Böden lassen sich gemäss LAGA TR 2004 in die Zuordnungsklassen Z 0 bis Z 1.2 einordnen.

Empfehlungen

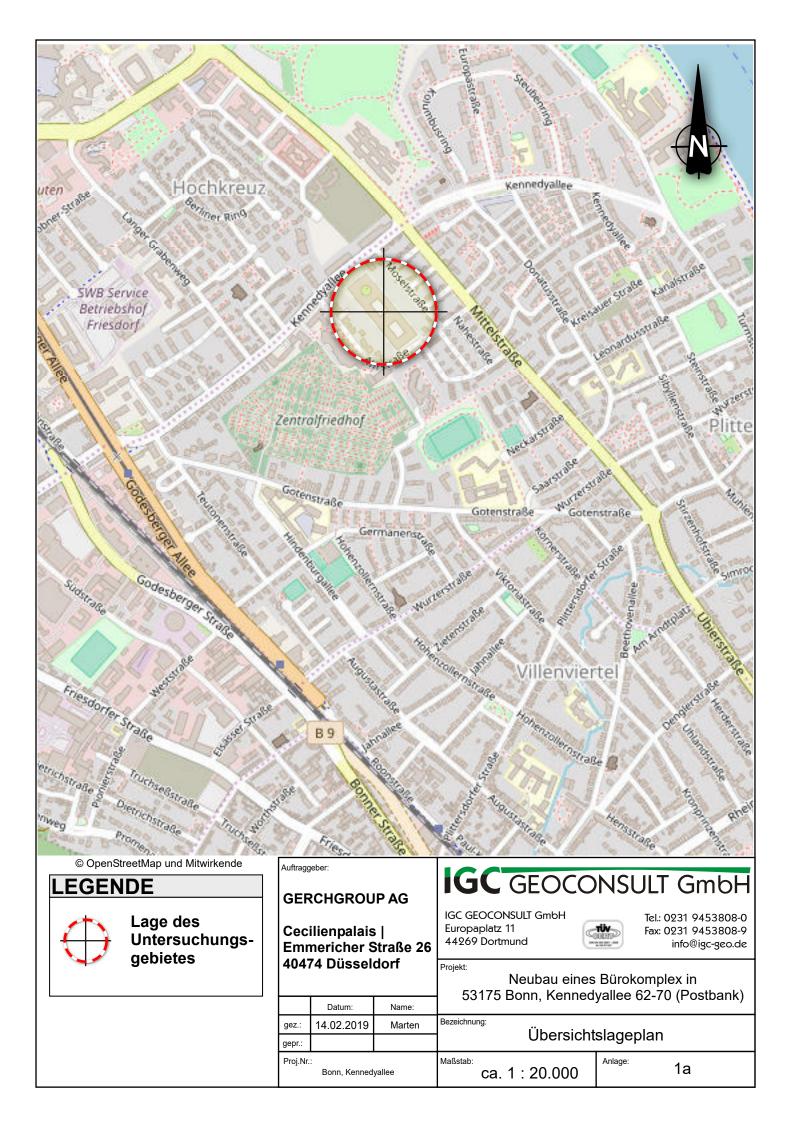
Nach Vorlage der konkreten Planung mit der endgültigen Lage der Baukörper und den entsprechenden Planhöhen können konkrete bauwerksbezogene Gründungsempfehlungen ausgesprochen werden.

In diesem Zuge wird es auch erforderlich, ergänzende Festgesteinsbohrungen durchzuführen, um die DIN-gerechte Erkundungstiefe von 7 m unter Gründungsniveau zu erreichen.

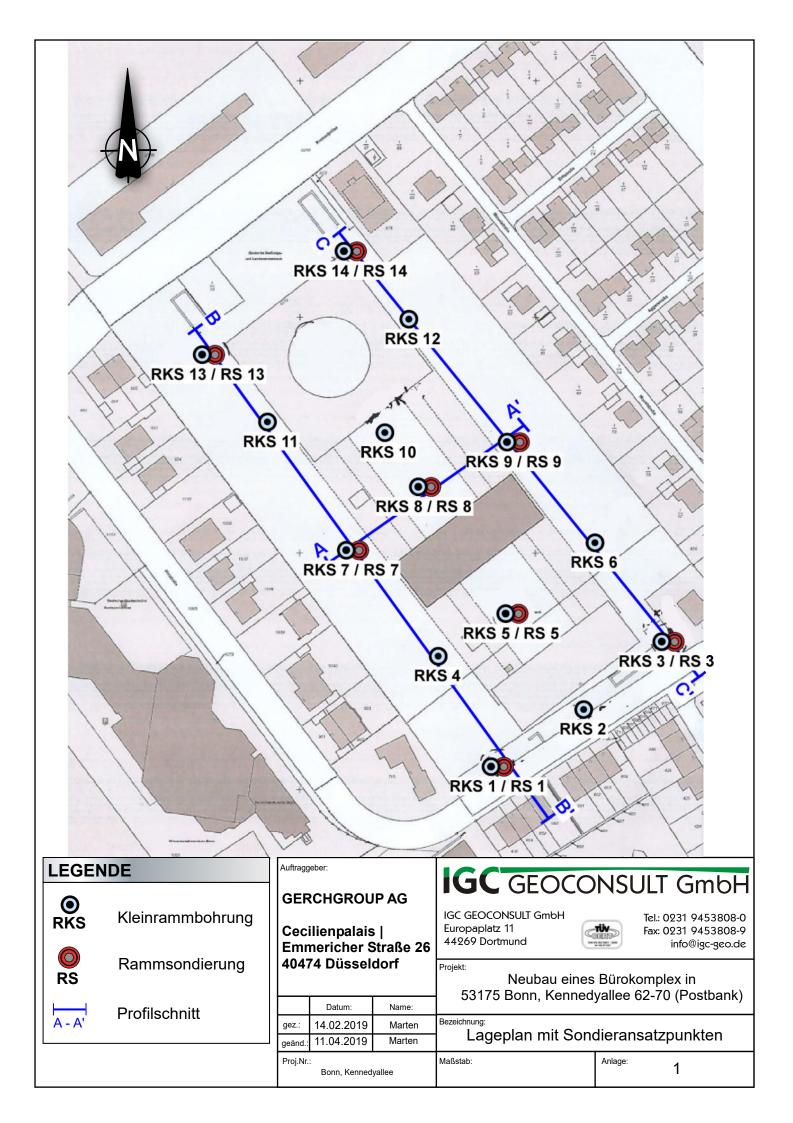
6. Hinweise

Bei einer Abweichung der tatsächlichen Gründungsebenen zu den im Gutachten angenommenen Gründungsniveaus bzw. bei Änderung der Planunterlagen ist der Gutachter ergänzend hinzuziehen.

Sollten sich bei der weiteren Planung noch Fragen ergeben, die im Gutachten nicht oder nur unzureichend behandelt wurden, wird der Sachbearbeiter um Mitteilung gebeten.


Dortmund, den 13.06.2019

Dipl.-Geol. Jens Iken


Anlage 1a

Übersichtslageplan

Anlage 1

Lageplan Sondieransatzpunkte

Anlage 2 a

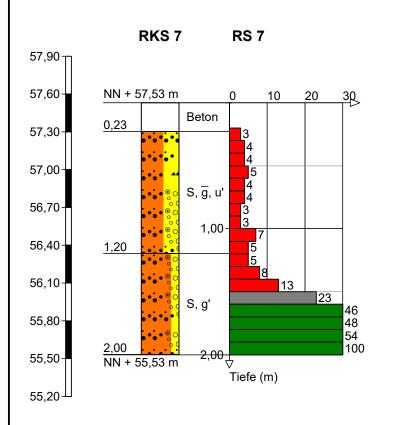
Profilschnitt A-A'

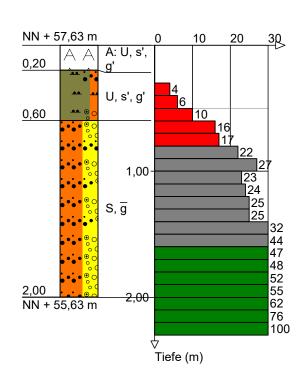
IGC GEOCONSULT GmbH

Europaplatz 11 44269 Dortmund Profilschnitt - Bohrprofile nach DIN 4023

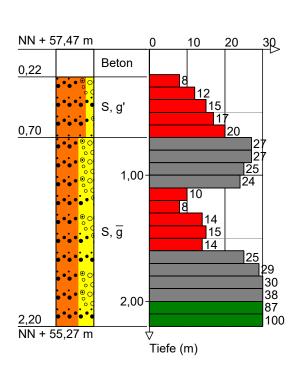
RKS 8

A - A'


Anlage Projekt: BV Postbank, Bonn Auftraggeber: GERCHGROUP AG Datum: 11.04.2019


RS 9

Bearb.: Marten


RKS 9

(NE) A' A (SW)

RS 8

Anlage 2 b

Profilschnitt B-B'

GC GEOCONSULT GmbH

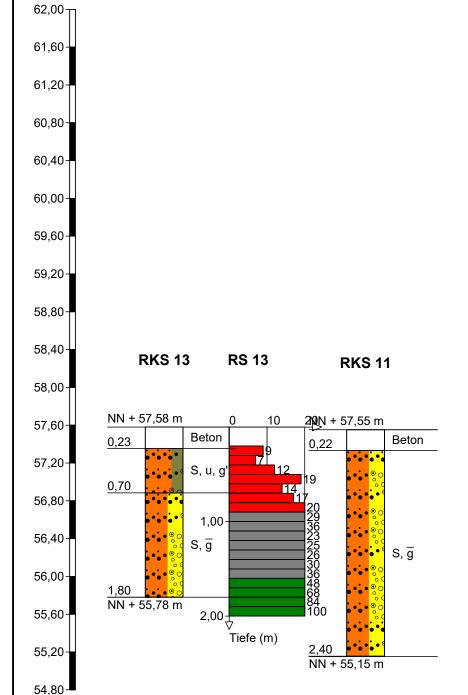
Europaplatz 11 44269 Dortmund Profilschnitt - Bohrprofile nach DIN 4023

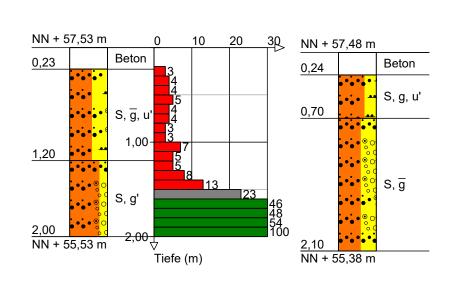
B - **B**'

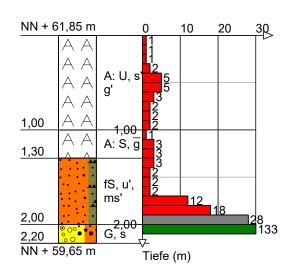
RKS 7

RS 7

Anlage
Projekt: BV Postbank, Bonn


Auftraggeber: GERCHGROUP AG


Bearb.: Marten Datum: 11.04.2019


(SE) B'

RKS 1 RS 1

RKS 4

Anlage 2 c

Profilschnitt C-C'

GC GEOCONSULT GmbH

Europaplatz 11 44269 Dortmund Profilschnitt - Bohrprofile nach DIN 4023

C - C'

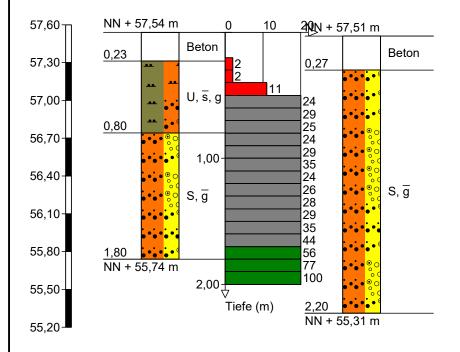
RKS 9

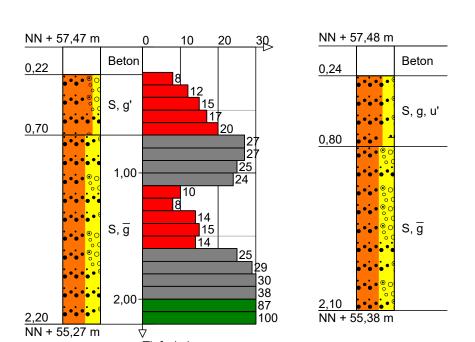
RS 9

Tiefe (m)

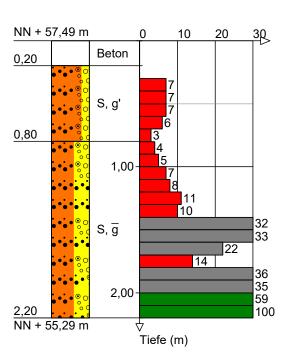
Anlage
Projekt: BV Postbank, Bonn

Auftraggeber: GERCHGROUP AG

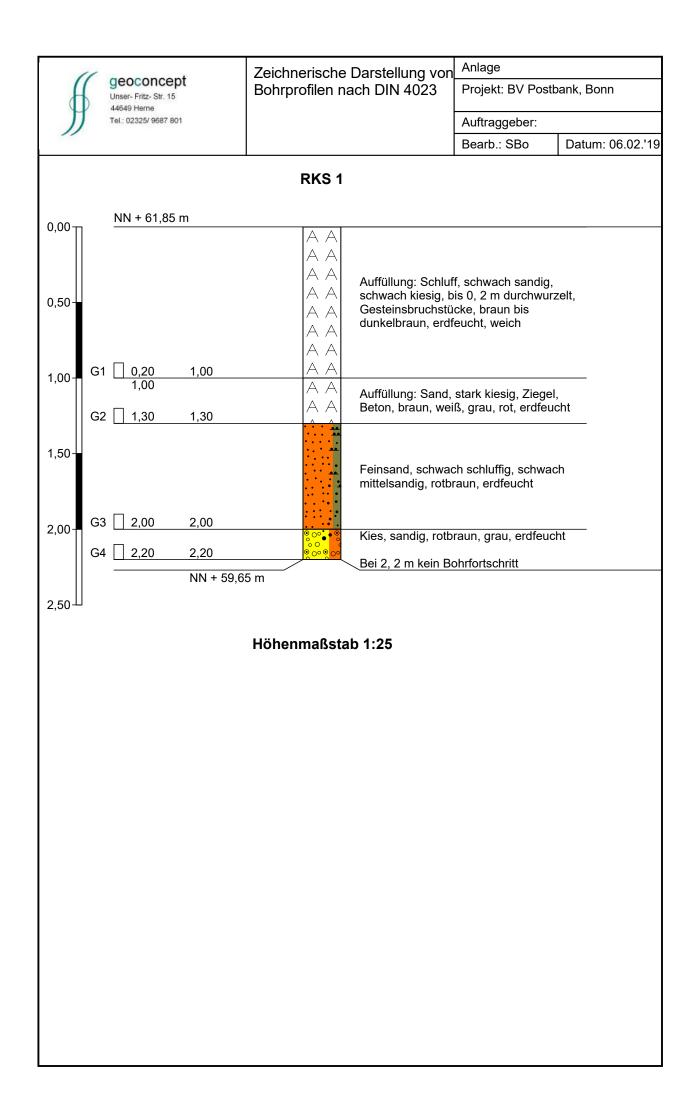

RKS 3

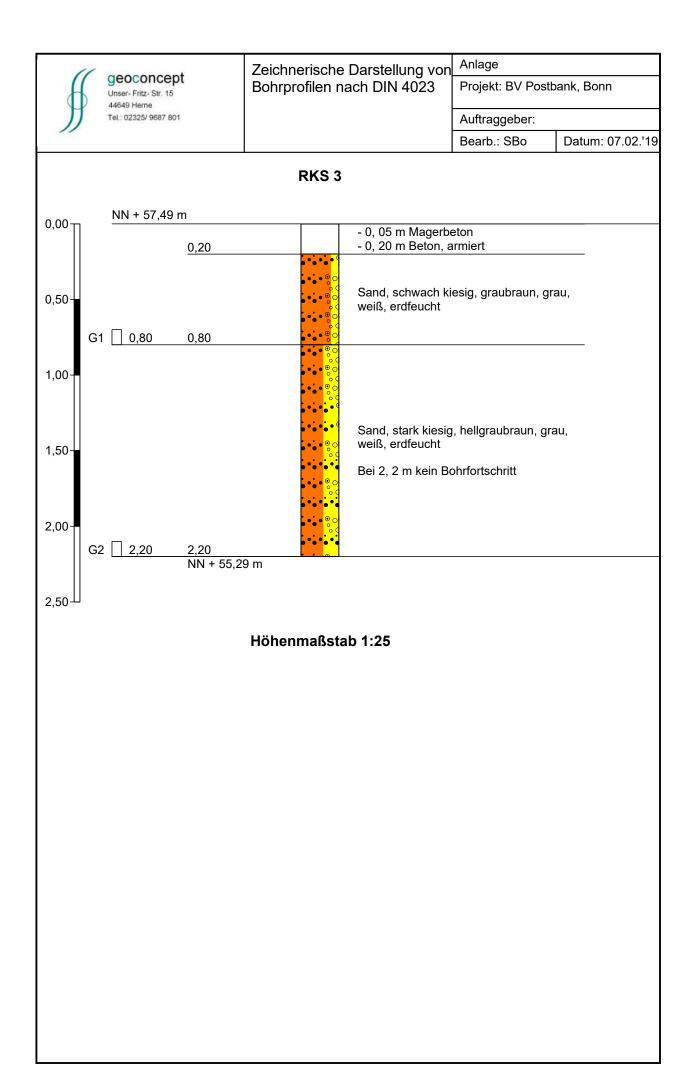

Bearb.: Marten Datum: 11.04.2019

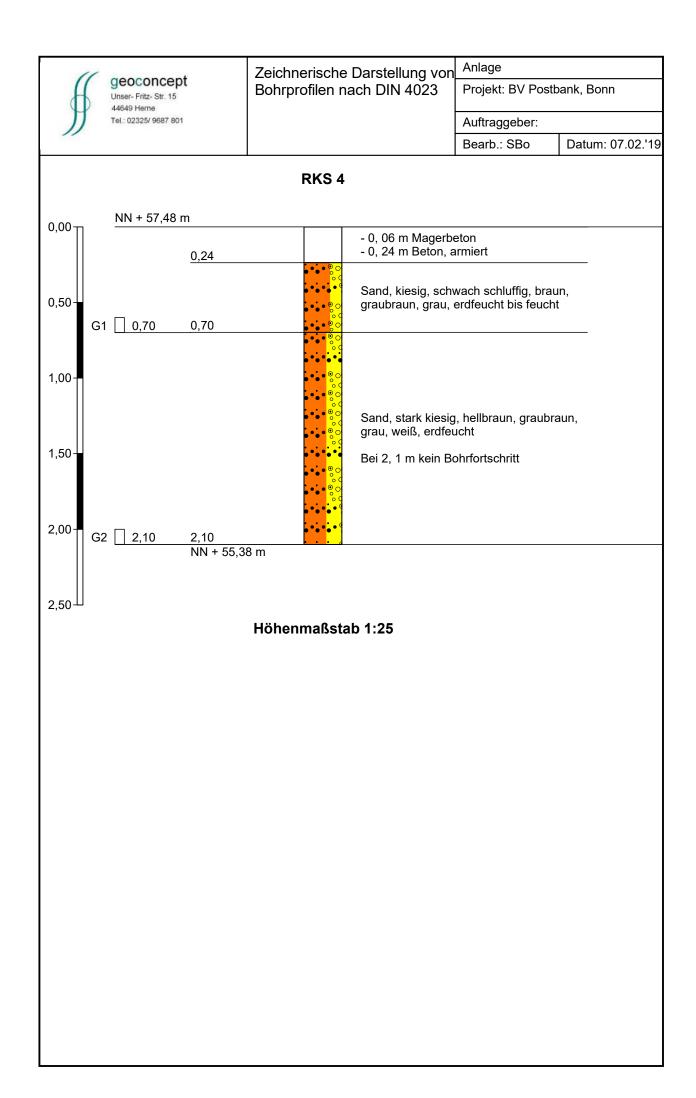
C (NW)

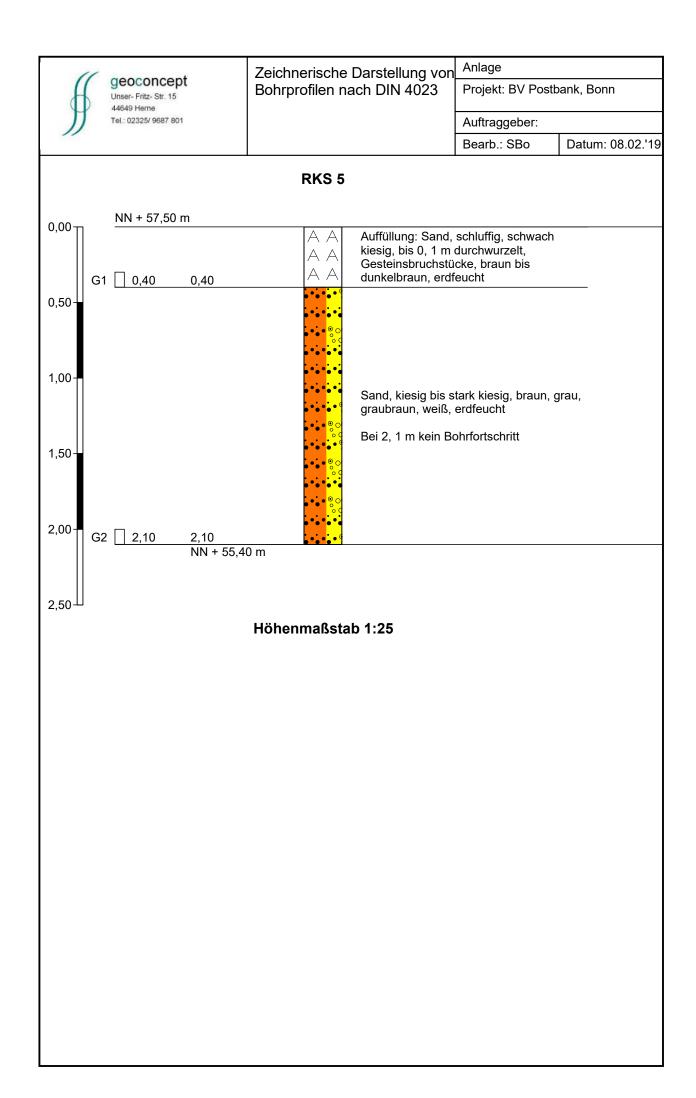

(SE) C'

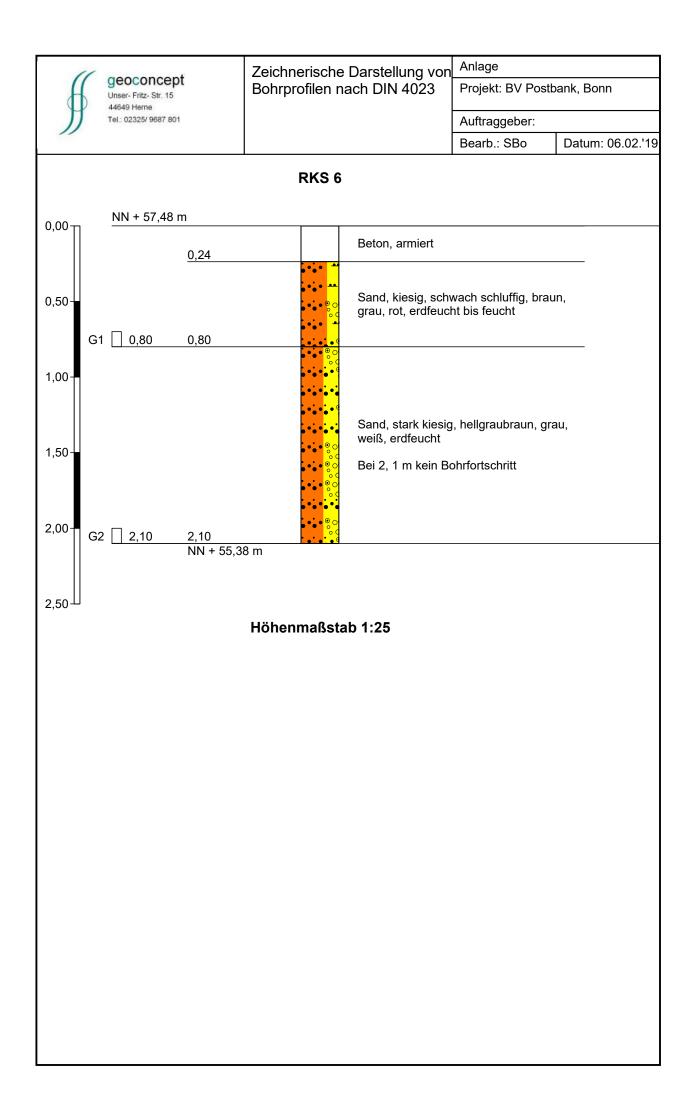
RKS 14 RS 14 RKS 12

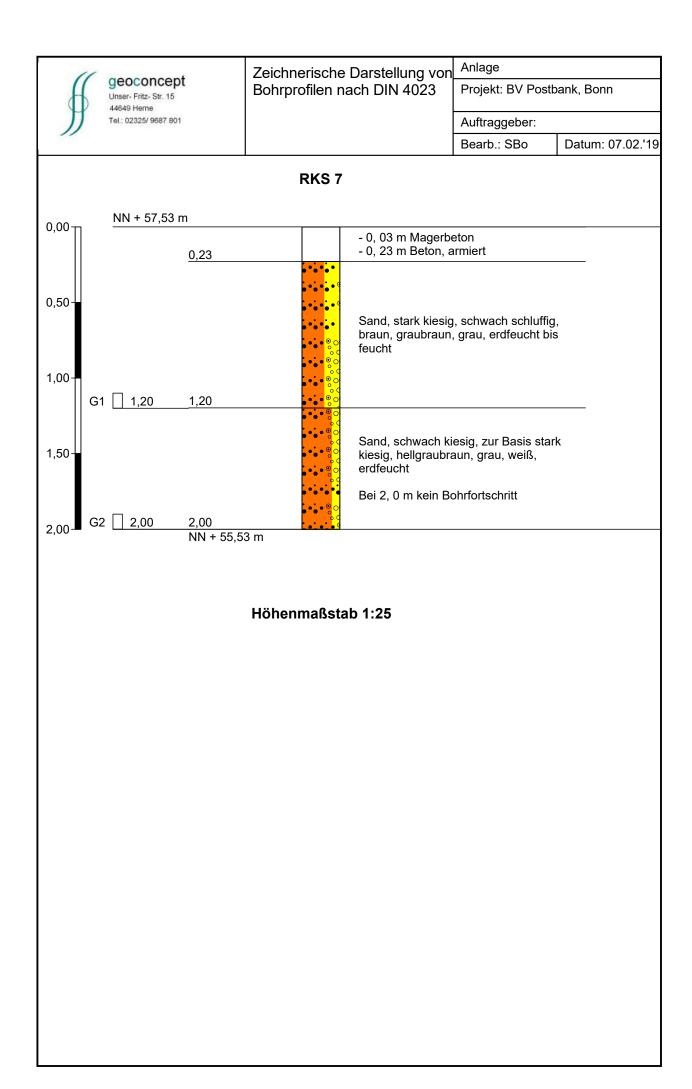

RKS 6

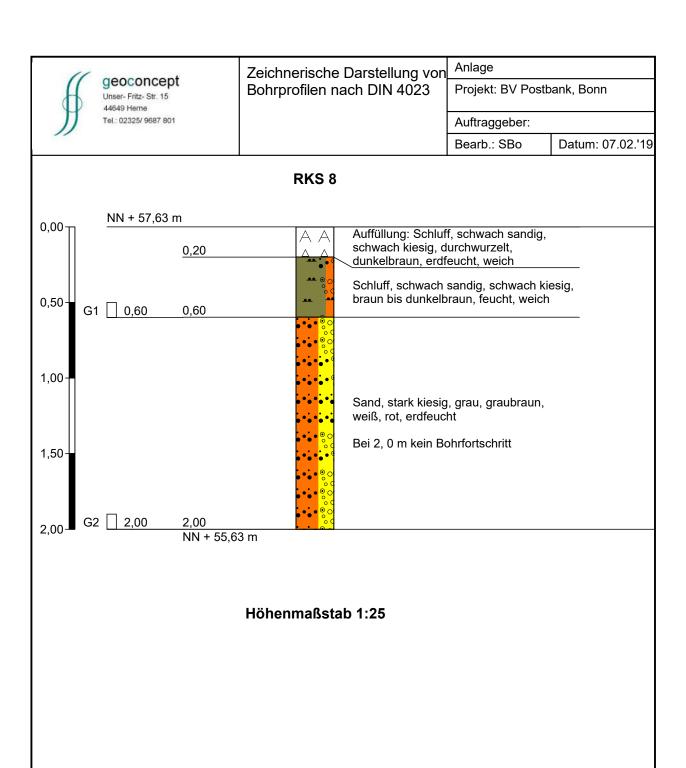

RS 3

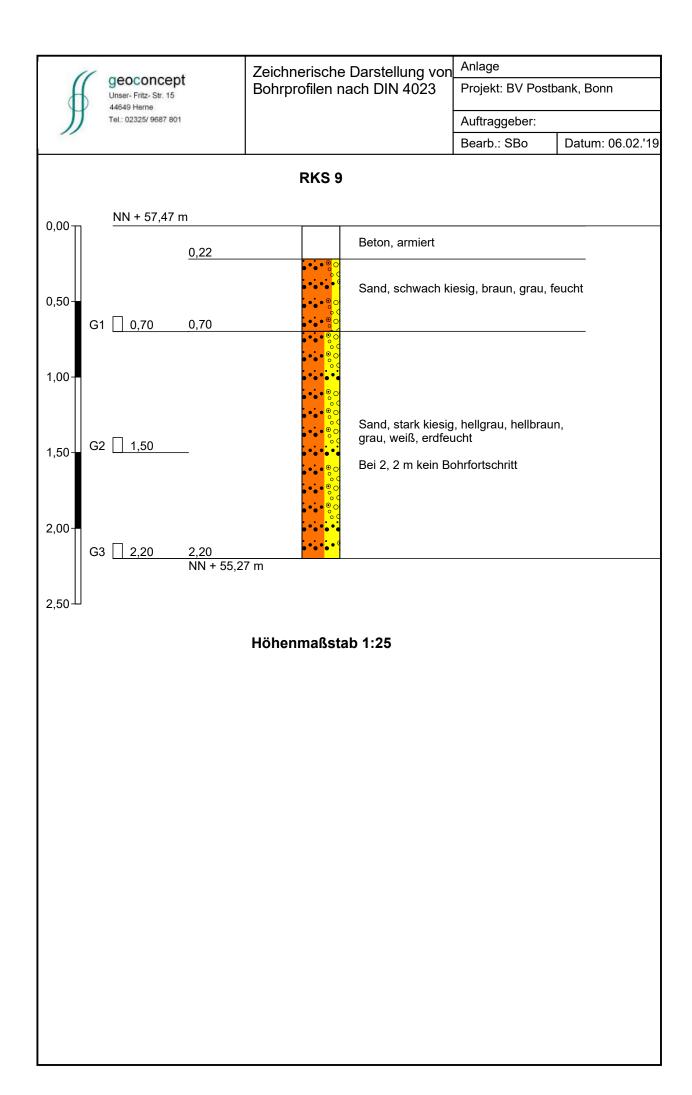

Anlage 2

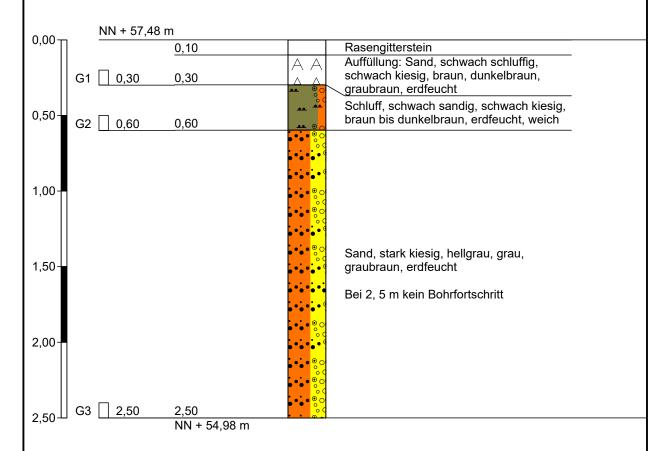

Darstellung der Schichtenprofile



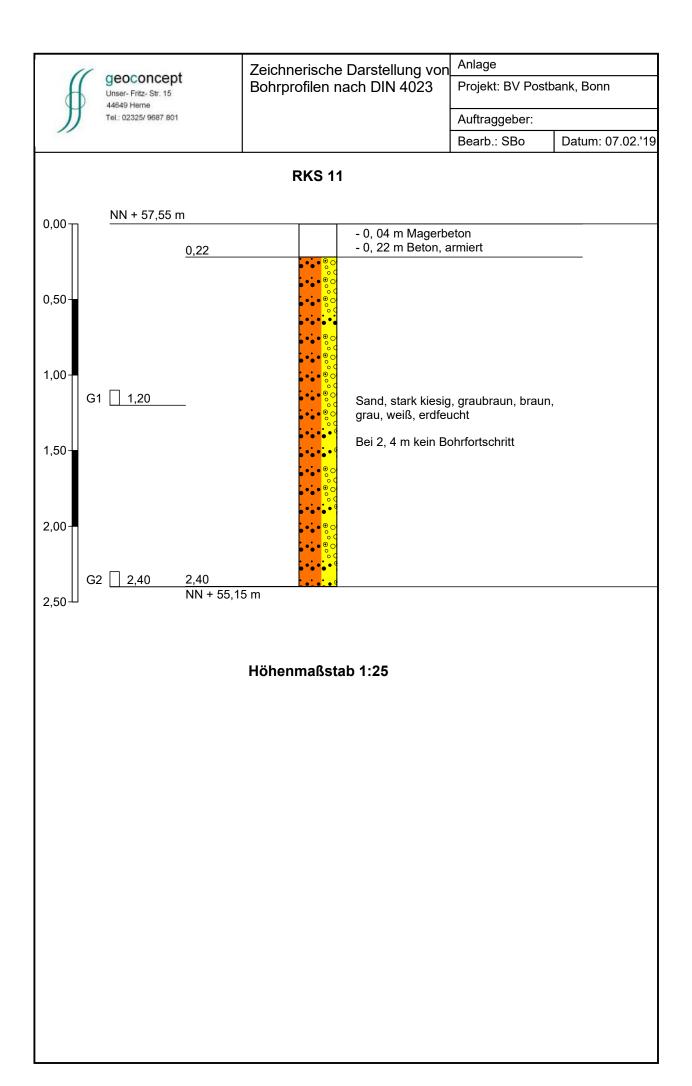


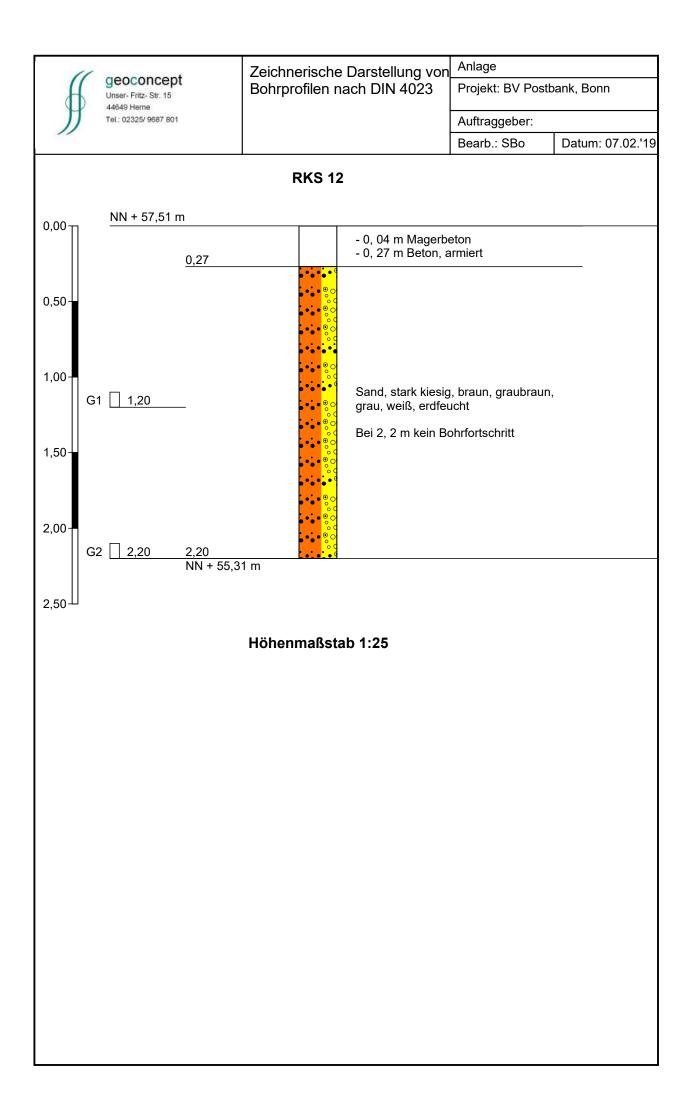


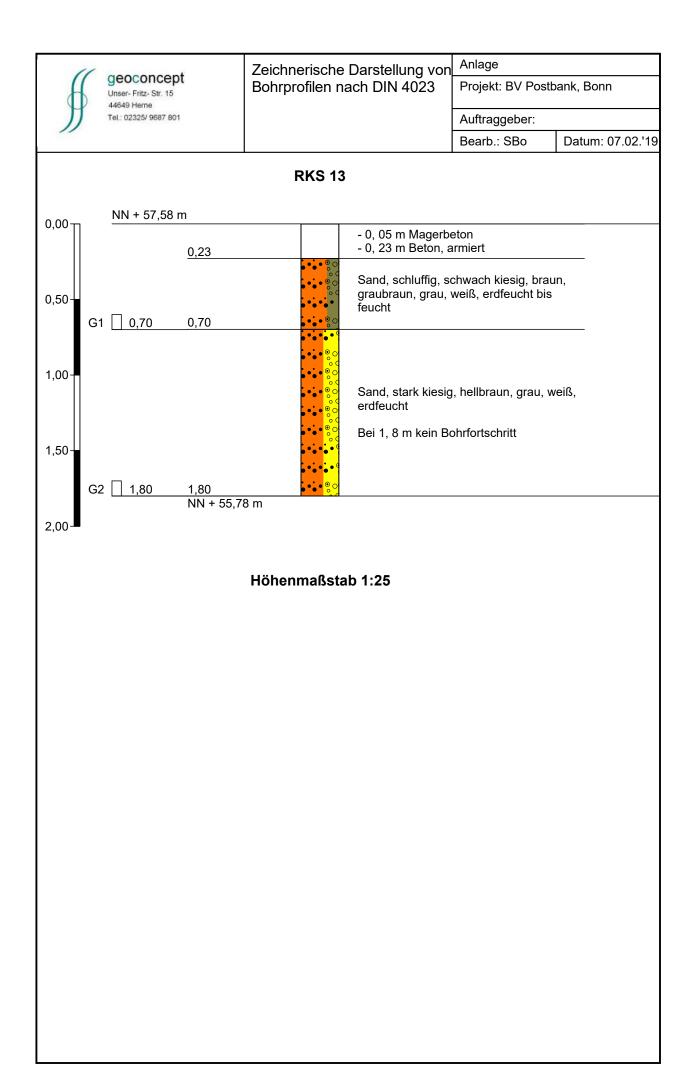


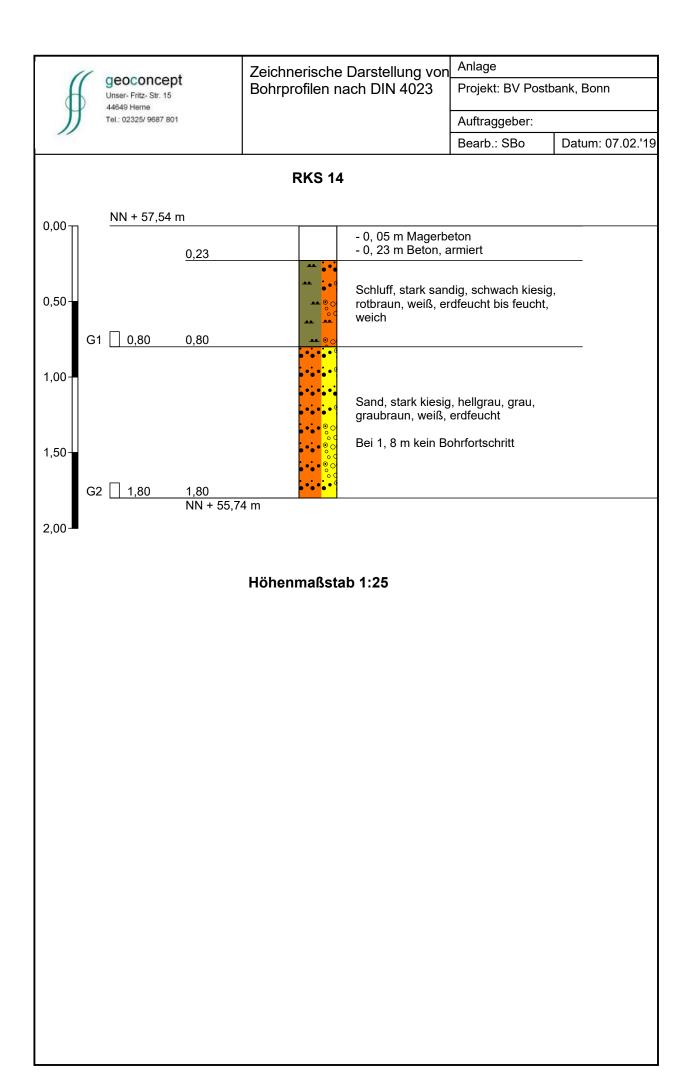

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023

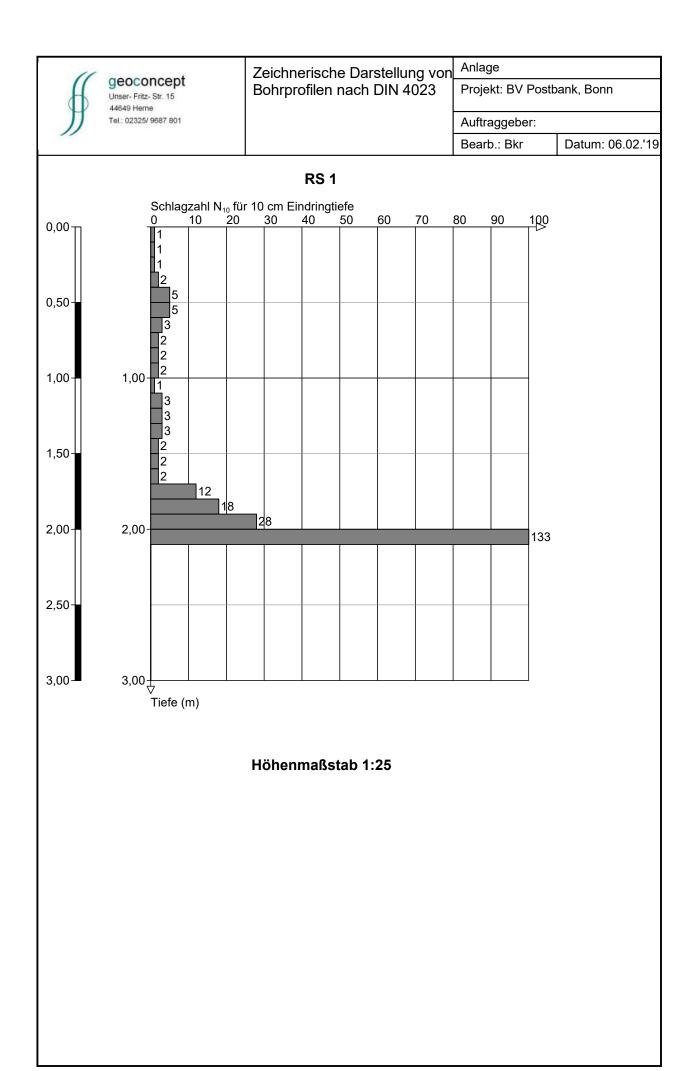
n Anlage Projekt: BV Postbank, Bonn

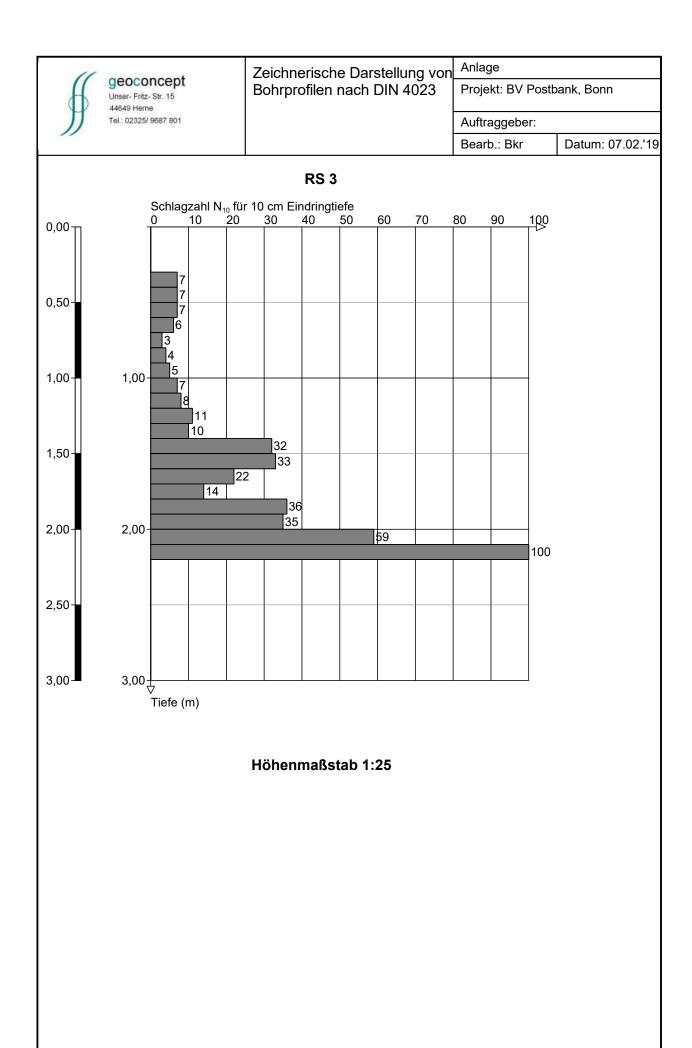

Auftraggeber:

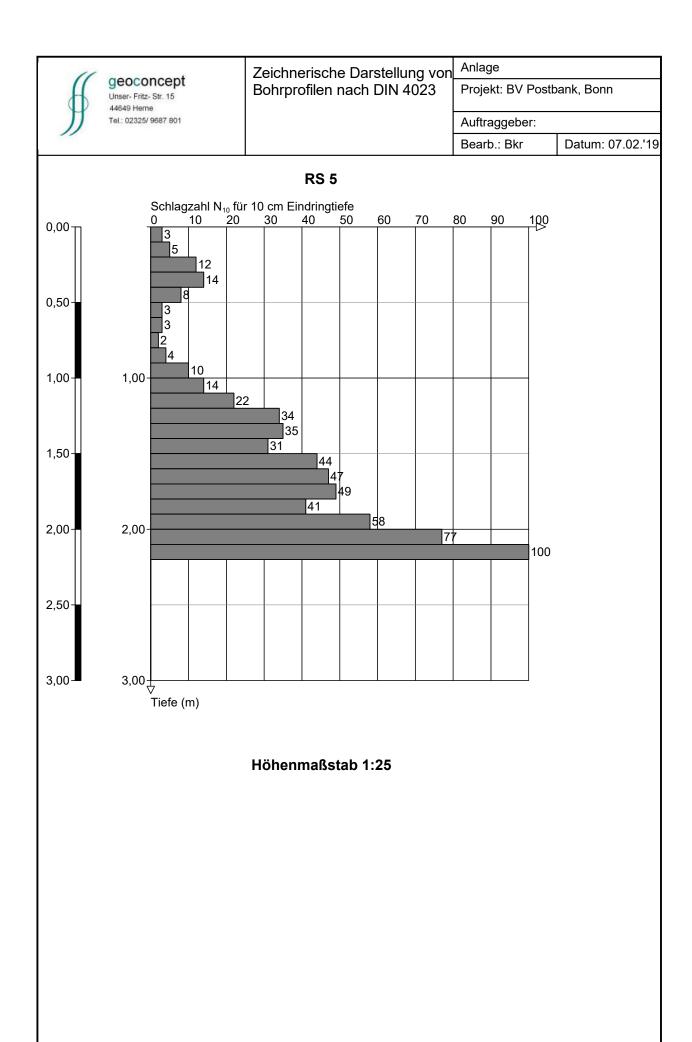

Bearb.: SBo Datum: 07.02.'19

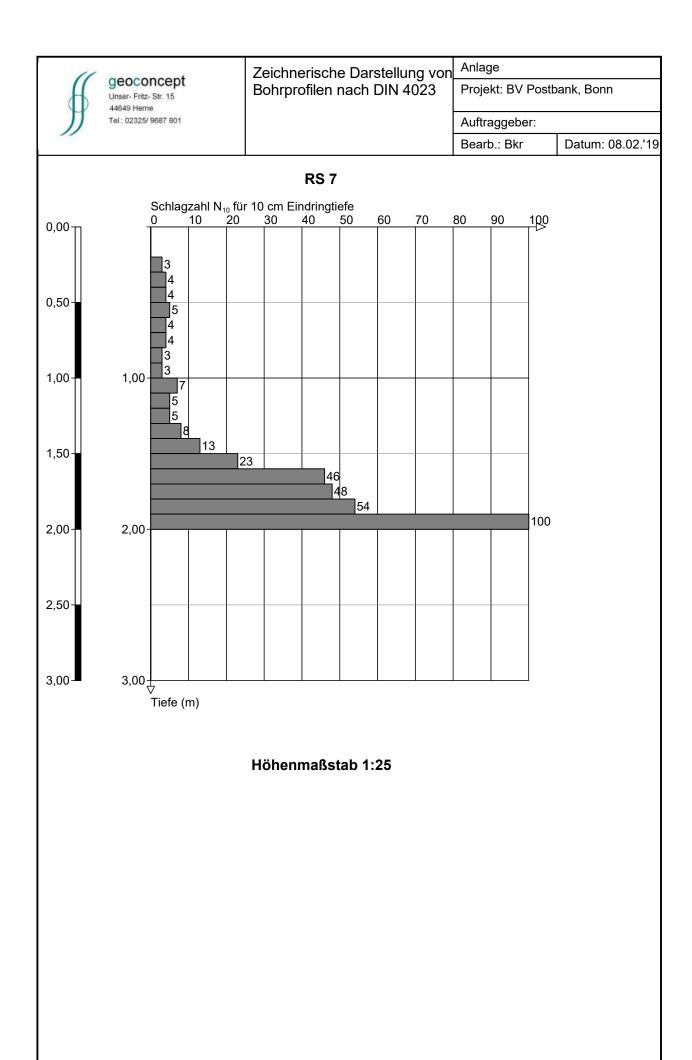

RKS 10

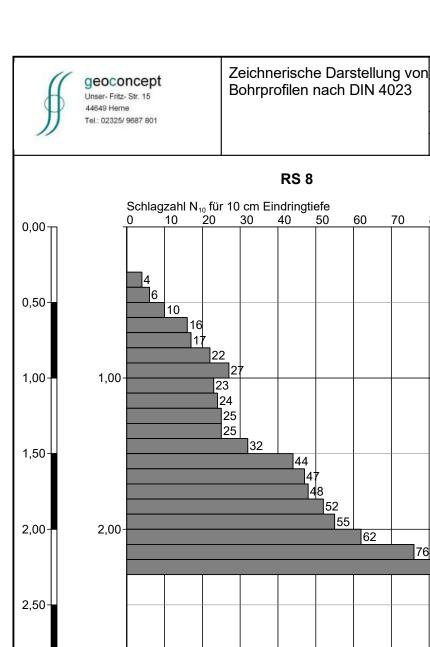


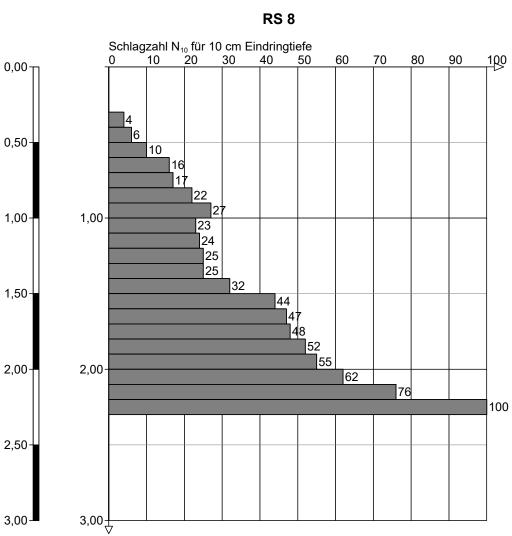

Höhenmaßstab 1:25



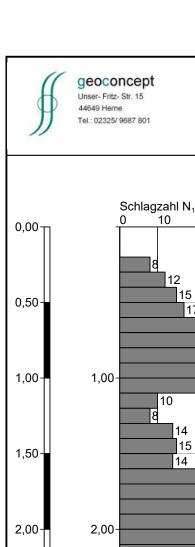








Tiefe (m)

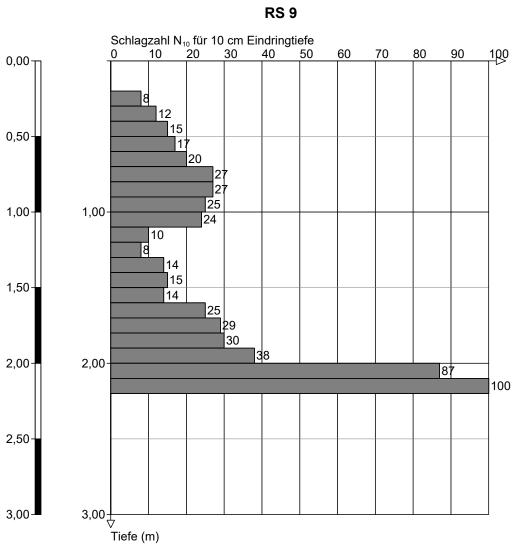

Anlage Projekt: BV Postbank, Bonn

Auftraggeber:

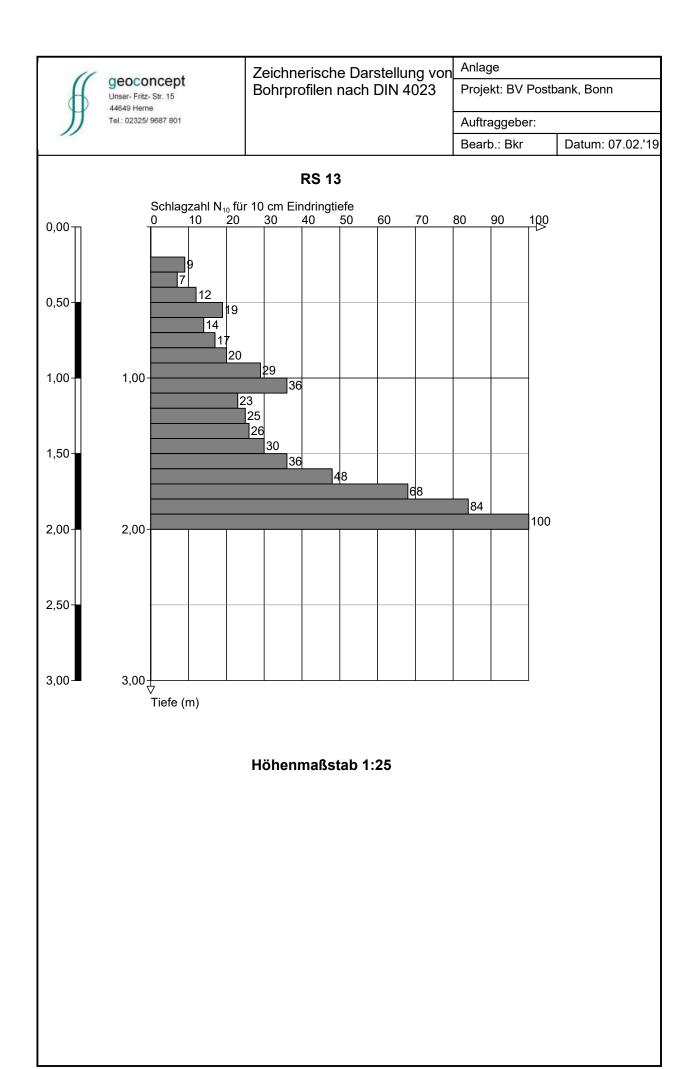
Bearb.: Bkr Datum: 08.02.'19

Höhenmaßstab 1:25

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023


Anlage

Projekt: BV Postbank, Bonn


Auftraggeber:


Bearb.: Bkr

Datum: 06.02.'19

Höhenmaßstab 1:25

Anlage 4

Ergebnisse der chemischen Laborversuche

GBA Gesellschaft für Bioanalytik mbh · Bruchstr. 5c · 45883 Gelsenkirchen

IGC GEOCONSULT GmbH

Europaplatz 11

44269 Dortmund

Prüfbericht-Nr.: 2019P210244 / 1

Auftraggeber	IGC GEOCONSULT GmbH	
Eingangsdatum	19.03.2019	
Projekt	BV Kennedyallee in Bonn	
Material	Materialprobe	
Kennzeichnung	siehe Tabelle	
Auftrag	Analytik gem. Vorgabe des Auftraggebers	
Verpackung	Schraubdeckelglas	
Probenmenge	siehe Tabelle	
Auftragsnummer	19202816	
Probenahme	durch den Auftraggeber	
Probentransport	GBA	
Labor	GBA Gesellschaft für Bioanalytik mbH	
Prüfbeginn / -ende	19.03.2019 - 02.04.2019	
Methoden	siehe letzte Seite	
Unteraufträge		
Bemerkung		
Probenaufbewahrung	Wenn nicht anders vereinbart, werden Feststoffproben drei Monate und Wasserproben bis zwei Wochen nach Prüfberichtserstellung aufbewahrt.	

Gelsenkirchen, 02.04.2019

i. A. Jan-Niklas Franzen

Projektbearbeitung

Die Prüfergebnisse beziehen sich ausschließlich auf die genannten Prüfgegenstände. Es wird keine Verantwortung für die Richtigkeit der Probenahme übernommen, wenn die Proben nicht durch die GBA oder in ihrem Auftrag genommen wurden. In diesem Fall beziehen sich die Ergebnisse auf die Probe wie erhalten. Ohne schriftliche Genehmigung der GBA darf der Prüfbericht nicht auszugsweise vervielfältigt werden.

Seite 1 von 11 zu Prüfbericht-Nr.: 2019P210244 / 1

www.gba-group.com

Zuordnungswerte gem. LAGA-Boden (M20, Fassung 2004)

Auftrag		19202816	19202816	
Probe-Nr.		001	002	
Material		Materialprobe	Materialprobe	
Probenbezeichnung		MP 1 : RKS 1/1+ RKS 1/2	MP 2 : RKS 2/1+ RKS 5/1	
Probemenge				
Probeneingang		19.03.2019	19.03.2019	
Analysenergebnisse	Einheit			
Aussehen		steinig, lehmig, krümelig	steinig, lehmig, krümelig	
Farbe		braun	braun	
Angelieferte Probenmenge	kg	0,86	0,72	
Probenvorbereitung	1	manuell	manuell	
Trockenrückstand	Masse-% TM	88,1	83,2	
TOC	Masse-% TM	0,7 Z1	1,3 Z1	
EOX	mg/kg TM	<1,0 Z0	<1,0 Z0	
Kohlenwasserstoffe	mg/kg TM	<100 Z0	<100 Z0	
mobiler Anteil bis C22	mg/kg TM	<50	<50	
Summe BTEX	mg/kg TM	<1,0 Z0	<1,0 Z0	
Summe LHKW	mg/kg TM	<1,0 Z0	<1,0 Z0	
Naphthalin	mg/kg TM	<0,050	<0,050	
Acenaphthylen	mg/kg TM	<0,050	<0,050	
Acenaphthen	mg/kg TM	<0,050	<0,050	
Fluoren	mg/kg TM	<0,050	<0,050	
Phenanthren	mg/kg TM	0,054	0,16	
Anthracen	mg/kg TM	<0,050	<0,050	
Fluoranthen	mg/kg TM	0,11	0,37	
Pyren	mg/kg TM	0,073	0,27	
Benz(a)anthracen	mg/kg TM	0,061	0,21	
Chrysen	mg/kg TM	0,077	0,23	
Benzo(b)+(k)fluoranthen	mg/kg TM	0,14	0,41	
Benzo(a)pyren	mg/kg TM	0,064 Z0	0,23 Z0	
Dibenz(ah)anthracen	mg/kg TM	<0,050	<0,050	
Indeno(1,2,3-cd)pyren	mg/kg TM	<0,050	0,082	
Benzo(g,h,i)perylen	mg/kg TM	<0,050	0,082	
Summe PAK (EPA)	mg/kg TM	<0,75 Z0	2,0 Z0	
PCB 28	mg/kg TM	<0,0010	<0,0010	
PCB 52	mg/kg TM	<0,0010	<0,0010	
PCB 101	mg/kg TM	<0,0010	<0,0010	
PCB 153	mg/kg TM	0,0016	0,0026	

Zuordnungswert in Klammern gilt nur in besonderen Fällen,

^{**} bei Überschreitung ist die Ursache zu prüfen, (siehe LAGA TR Boden)

GBAGROUP **ENVIRONMENT**

Auftrag		19202816	19202816		
Probe-Nr.		001	002		
Material		Materialprobe		Materialprobe	
Probenbezeichnung		MP 1 : RKS 1/1+ RKS 1/2	2	MP 2 : RKS 2/1+ RKS 5/1	
PCB 138	mg/kg TM	0,0015	-	0,0018	
PCB 180	mg/kg TM	0,0012		0,0012	****
PCB Summe 6 Kongenere	mg/kg TM	<0,010	Z0	<0,010	ZC
Arsen	mg/kg TM	7,4	Z0	7,2	Z
Blei	mg/kg TM	20	Z0	30	Z
Cadmium	mg/kg TM	0,30	Z0	0,35	ZC
Chrom ges.	mg/kg TM	22	Z0	15	ZC
Kupfer	mg/kg TM	11	Z0	14	ZC
Nickel	mg/kg TM	21	Z1	17	Z1
Quecksilber	mg/kg TM	<0,10	Z0	<0,10	ZC
Thallium	mg/kg TM	<0,30	Z0	<0,30	ZC
Zink	mg/kg TM	58	ZO	75	Z1
Cyanid ges.	mg/kg TM	<1,0	Z0	<1,0	ZC
Trockenrückstand	Masse-%	88,1		83,2	-
Eluat-Einwaage	g	113		120	
Eluiervolumen	mL	987		980	
Filtratvolumen	mL	960		950	-
pH-Wert		10,5	Z1.2	8,0	ZC
Leitfähigkeit	μS/cm	175	Z0	106	ZC
Chlorid	mg/L	0,67	Z0	<0,60	ZC
Sulfat	mg/L	18	Z0	1,0	ZO
Cyanid ges.	µg/L	<5,0	ZO	<5,0	ZC
Phenolindex	µg/L	<5,0	Z0	<5,0	ZO
Arsen	μg/L	8,7	Z0	3,6	ZO
Blei	μg/L	<1,0	ZO	<1,0	ZO
Cadmium	μg/L	<0,30	Z0	<0,30	ZO
Chrom ges.	µg/L	1,4	Z0	1,5	ZO
Kupfer	μg/L	17	Z0	3,4	ZO
Nickel	μg/L	2,2	Z0	1,2	ZO
Quecksilber	µg/L	<0,20	Z0	<0,20	ZO
Thallium	µg/L	<1,0		<1,0	
Zink	µg/L	<10	ZO	<10	ZO
Aussehen		klar		klar	
Farbe		farblos		farblos	

Zuordnungswert in Klammern gilt nur in besonderen Fällen, ** bei Überschreitung ist die Ursache zu prüfen, (siehe LAGA TR Boden)

Auftrag		19202816	19202816
Probe-Nr.		003	004
Material		Materialprobe	Materialprobe
Probenbezeichnung		MP 3 : RKS 8/1+ RKS 10/1	MP 4 : RKS 1/3+ RKS 2/2
Probemenge			
Probeneingang		19.03.2019	19.03.2019
Analysenergebnisse	Einheit		
Aussehen		steinig, lehmig, krümelig	steinig, lehmig, krümelig
Farbe		braun -	braun
Angelieferte Probenmenge	kg	0,84	0,8
Probenvorbereitung	1	manuell -	manuell
Trockenrückstand	Masse-% TM	90,2	95,4
TOC	Masse-% TM	0,6	Z1 0,2 Z0
EOX	mg/kg TM	<1,0 2	ZO <1,0 ZO
Kohlenwasserstoffe	mg/kg TM	<100 2	ZO <100 ZO
mobiler Anteil bis C22	mg/kg TM	<50 -	<50
Summe BTEX	mg/kg TM	<1,0 2	ZO <1,0 ZO
Summe LHKW	mg/kg TM	<1,0 2	ZO <1,0 ZO
Naphthalin	mg/kg TM	<0,050	<0,050
Acenaphthylen	mg/kg TM	<0,050	<0,050
Acenaphthen	mg/kg TM	<0,050	<0,050
Fluoren	mg/kg TM	<0,050	<0,050
Phenanthren	mg/kg TM	0,068	<0,050
Anthracen	mg/kg TM	<0,050	<0,050
Fluoranthen	mg/kg TM	0,083	<0,050
Pyren	mg/kg TM	0,052	<0,050
Benz(a)anthracen	mg/kg TM	<0,050	<0,050
Chrysen	mg/kg TM	0,064	<0,050
Benzo(b)+(k)fluoranthen	mg/kg TM	0,11	<0,050
Benzo(a)pyren	mg/kg TM	<0,050 2	ZO <0,050 ZO
Dibenz(ah)anthracen	mg/kg TM	<0,050	<0,050
Indeno(1,2,3-cd)pyren	mg/kg TM	<0,050	<0,050
Benzo(g,h,i)perylen	mg/kg TM	<0,050	<0,050
Summe PAK (EPA)	mg/kg TM	<0,75	70 n.n. Z0
PCB 28	mg/kg TM	<0,0010	<0,0010
PCB 52	mg/kg TM	<0,0010	<0,0010
PCB 101	mg/kg TM	<0,0010	<0,0010
PCB 153	mg/kg TM	0,0010	<0,0010

Zuordnungswert in Klammern gilt nur in besonderen Fällen, ** bei Überschreitung ist die Ursache zu prüfen, (siehe LAGA TR Boden)

GBAGROUP ENVIRONMENT

Auftrag		19202816	19202816	
Probe-Nr.		003	004	
Material		Materialprobe	Materialprobe	
Probenbezeichnung		MP 3 : RKS 8/1+ RKS 10/1	MP 4 : RKS 1/3+ RKS 2/2	
PCB 138	mg/kg TM	0,0010	<0,0010 -	
PCB 180	mg/kg TM	<0,0010	<0,0010	
PCB Summe 6 Kongenere	mg/kg TM	<0,010 Z0	<0,010 Z	
Arsen	mg/kg TM	7,1 Z0	6,0 Z	
Blei	mg/kg TM	25 Z0	7,0 Z	
Cadmium	mg/kg TM	0,26 Z0	<0,10 Z	
Chrom ges.	mg/kg TM	18 Z0	14 Z	
Kupfer	mg/kg TM	9,6 Z0	7,4 Z	
Nickel	mg/kg TM	20 Z1	20 Z	
Quecksilber	mg/kg TM	<0,10 Z0	<0,10 Z	
Thallium	mg/kg TM	<0,30 Z0	<0,30 Z	
Zink	mg/kg TM	50 Z0	27 Z	
Cyanid ges.	mg/kg TM	<1,0 Z0	<1,0 Z	
Trockenrückstand	Masse-%	90,2	95,4	
Eluat-Einwaage	g	111	- 105	
Eluiervolumen	mL	989	995	
Filtratvolumen	mL	960	970	
pH-Wert		8,2 Z0	8,4 Z	
Leitfähigkeit	μS/cm	83,5 Z0	87,1 Z	
Chlorid	mg/L	<0,60 Z0	1,7 Z	
Sulfat	mg/L	<0,50 Z0	5,8 Z	
Cyanid ges.	µg/L	<5,0 Z0	<5,0 Z	
Phenolindex	µg/L	<5,0 Z0	<5,0 Z	
Arsen	µg/L	0,71 Z0	0,51 Z	
Blei	µg/L	<1,0 Z0	<1,0 Z	
Cadmium	μg/L	<0,30 Z0	<0,30 Z	
Chrom ges.	µg/L	1,3 Z0	<1,0 Z	
Kupfer	µg/L	2,0 Z0	<1,0 Z	
Nickel	μg/L	<1,0 Z0	<1,0 Z	
Quecksilber	µg/L	<0,20 Z0	<0,20 Z	
Thallium	µg/L	<1,0	<1,0	
Zink	μg/L	<10 Z0	<10 Z	
Aussehen		klar	klar	
Farbe		farblos	farblos	

^{**} bei Überschreitung ist die Ursache zu prüfen, (siehe LAGA TR Boden)

Auftrag		19202816	19202816
Probe-Nr.		005	006
Material		Materialprobe	Materialprobe
Probenbezeichnung		MP 5 : RKS 4/1+ RKS 5/2+ RKS 6/1	MP 6: RKS 7/1+ RKS 7/2 + RKS 14/2
Probemenge			
Probeneingang		19.03.2019	19.03.2019
Analysenergebnisse	Einheit		
Aussehen		steinig, lehmig, krümelig	steinig, lehmig, krümelig
Farbe		braun	braun
Angelieferte Probenmenge	kg	0,84	- 0,93
Probenvorbereitung	1	manuell	manuell
Trockenrückstand	Masse-% TM	94,1	98,5
TOC	Masse-% TM	0,3 Z	0,1 Z0
EOX	mg/kg TM	<1,0 Z	0 <1,0 Z0
Kohlenwasserstoffe	mg/kg TM	<100 Z	0 <100 Z0
mobiler Anteil bis C22	mg/kg TM	<50	- <50
Summe BTEX	mg/kg TM	<1,0 Z	0 <1,0 Z0
Summe LHKW	mg/kg TM	<1,0 Z	0 <1,0 Z0
Naphthalin	mg/kg TM	<0,050	<0,050
Acenaphthylen	mg/kg TM	<0,050	<0,050
Acenaphthen	mg/kg TM	<0,050	<0,050
Fluoren	mg/kg TM	<0,050	- <0,050
Phenanthren	mg/kg TM	<0,050	- <0,050
Anthracen	mg/kg TM	<0,050	<0,050
Fluoranthen	mg/kg TM	<0,050	<0,050
Pyren	mg/kg TM	<0,050	<0,050
Benz(a)anthracen	mg/kg TM	<0,050	<0,050
Chrysen	mg/kg TM	<0,050	<0,050
Benzo(b)+(k)fluoranthen	mg/kg TM	<0,050 -	- <0,050
Benzo(a)pyren	mg/kg TM	<0,050 Z	0 <0,050 Z0
Dibenz(ah)anthracen	mg/kg TM	<0,050	- <0,050
Indeno(1,2,3-cd)pyren	mg/kg TM	<0,050	<0,050
Benzo(g,h,i)perylen	mg/kg TM	<0,050	- <0,050
Summe PAK (EPA)	mg/kg TM	n.n. Z	n.n. Z0
PCB 28	mg/kg TM	<0,0010	- <0,0010
PCB 52	mg/kg TM	<0,0010	- <0,0010
PCB 101	mg/kg TM	<0,0010 -	- <0,0010
PCB 153	mg/kg TM	0,0012	<0,0010

Zuordnungswert in Klammern gilt nur in besonderen Fällen, ** bei Überschreitung ist die Ursache zu prüfen, (siehe LAGA TR Boden)

Auftrag		19202816	19202816	
Probe-Nr.		005	006	
Material		Materialprobe	Materialprobe	
Probenbezeichnung		MP 5 : RKS 4/1+ RKS 5/2+ RKS 6/1	MP 6 : RKS 7/1+ RKS 7/2 + RKS 14/2	
PCB 138	mg/kg TM	0,0011	<0,0010	
PCB 180	mg/kg TM	<0,0010	<0,0010	
PCB Summe 6 Kongenere	mg/kg TM	<0,010 Z0	<0,010 Z0	
Arsen	mg/kg TM	7,9 Z0	3,3 Z0	
Blei	mg/kg TM	5,3 Z0	3,5 Z0	
Cadmium	mg/kg TM	<0,10 Z0	<0,10 Z0	
Chrom ges.	mg/kg TM	13 Z0	9,0 Z0	
Kupfer	mg/kg TM	4,8 Z0	4,3 Z0	
Nickel	mg/kg TM	18 Z1	14 Z0	
Quecksilber	mg/kg TM	<0,10 Z0	<0,10 Z0	
Thallium	mg/kg TM	<0,30 Z0	<0,30 Z0	
Zink	mg/kg TM	55 Z0	15 ZC	
Cyanid ges.	mg/kg TM	<1,0 Z0	<1,0 Z0	
Trockenrückstand	Masse-%	94,1	98,5	
Eluat-Einwaage	g	106	102	
Eluiervolumen	mL	994	998	
Filtratvolumen	mL	970	970	
pH-Wert	111	9,6 Z1.2	7,8 Z0	
Leitfähigkeit	µS/cm	130 Z0	84,9 Z0	
Chlorid	mg/L	7,3 Z0	2,7 Z0	
Sulfat	mg/L	5,9 Z0	2,2 Z0	
Cyanid ges.	µg/L	<5,0 Z0	<5,0 Z0	
Phenolindex	µg/L	<5,0 Z0	<5,0 Z0	
Arsen	µg/L	4,6 Z0	1,8 Z0	
Blei	µg/L	<1,0 Z0	<1,0 Z0	
Cadmium	µg/L	<0,30 Z0	<0,30 Z0	
Chrom ges.	µg/L	<1,0 Z0	<1,0 Z0	
Kupfer	µg/L	1,6 Z0	1,5 Z0	
Nickel	µg/L	<1,0 Z0	<1,0 Z0	
Quecksilber	µg/L	<0,20 Z0	<0,20 Z0	
Thallium	µg/L	<1,0	<1,0	
Zink	µg/L	<10 Z0	<10 Z0	
Aussehen	1	klar	klar	
Farbe		farblos	farblos	

Zuordnungswert in Klammern gilt nur in besonderen Fällen, ** bei Überschreitung ist die Ursache zu prüfen, (siehe LAGA TR Boden)

Prüfbericht-Nr.: 2019P210244 / 1

BV Kennedyallee in Bonn

Auftrag		19202816
Probe-Nr.		007
Material		Materialprobe
Probenbezeichnung		MP 7 : RKS 8/2+ RKS 10/2+ RKS 14/1
Probemenge		
Probeneingang		19.03.2019
Analysenergebnisse	Einheit	
Aussehen		steinig, lehmig, krümelig
Farbe		braun
Angelieferte Probenmenge	kg	0,9
Probenvorbereitung	1	manuell
Trockenrückstand	Masse-% TM	91,3
TOC	Masse-% TM	0,3 Z
EOX	mg/kg TM	<1,0 Z
Kohlenwasserstoffe	mg/kg TM	<100 Z
mobiler Anteil bis C22	mg/kg TM	<50
Summe BTEX	mg/kg TM	<1,0 Z(
Summe LHKW	mg/kg TM	<1,0 Z(
Naphthalin	mg/kg TM	<0,050
Acenaphthylen	mg/kg TM	<0,050
Acenaphthen	mg/kg TM	<0,050
Fluoren	mg/kg TM	<0,050
Phenanthren	mg/kg TM	<0,050
Anthracen	mg/kg TM	<0,050
Fluoranthen	mg/kg TM	<0,050
Pyren	mg/kg TM	<0,050
Benz(a)anthracen	mg/kg TM	<0,050
Chrysen	mg/kg TM	<0,050
Benzo(b)+(k)fluoranthen	mg/kg TM	<0,050
Benzo(a)pyren	mg/kg TM	<0,050 Z0
Dibenz(ah)anthracen	mg/kg TM	<0,050
ndeno(1,2,3-cd)pyren	mg/kg TM	<0,050
Benzo(g,h,i)perylen	mg/kg TM	<0,050
Summe PAK (EPA)	mg/kg TM	n.n. Z0
PCB 28	mg/kg TM	<0,0010
PCB 52	mg/kg TM	0,0013
PCB 101	mg/kg TM	0,0011
PCB 153	mg/kg TM	0,0011

Zuordnungswert in Klammern gilt nur in besonderen Fällen, ** bei Überschreitung ist die Ursache zu prüfen, (siehe LAGA TR Boden)

Auftrag		19202816	
Probe-Nr.		007	
Material		Materialprobe	
Probenbezeichnung		MP 7 : RKS 8/2+ RKS 10/2+ RKS	14/1
PCB 138	mg/kg TM	<0,0010	
PCB 180	mg/kg TM	<0,0010	
PCB Summe 6 Kongenere	mg/kg TM	<0,010	ZC
Arsen	mg/kg TM	7,0	ZC
Blei	mg/kg TM	10	ZO
Cadmium	mg/kg TM	0,15	ZO
Chrom ges.	mg/kg TM	17	ZO
Kupfer	mg/kg TM	8,5	ZO
Nickel	mg/kg TM	23	Z1
Quecksilber	mg/kg TM	<0,10	ZO
Thallium	mg/kg TM	<0,30	ZO
Zink	mg/kg TM	37	ZO
Cyanid ges.	mg/kg TM	<1,0	Z0
Trockenrückstand	Masse-%	91,3	
Eluat-Einwaage	g	110	
Eluiervolumen	mL	990	
Filtratvolumen	mL	970	
pH-Wert		8,4	ZO
Leitfähigkeit	μS/cm	71,8	ZO
Chlorid	mg/L	0,99	ZO
Sulfat	mg/L	1,2	ZO
Cyanid ges.	µg/L	<5,0	ZO
Phenolindex	µg/L	<5,0	ZO
Arsen	µg/L	1,7	ZO
Blei	μg/L	<1,0	ZO
Cadmium	μg/L	<0,30	ZO
Chrom ges.	µg/L	1,2	ZO
Kupfer	µg/L	1,2	ZO
Nickel	µg/L	<1,0	ZO
Quecksilber	µg/L	<0,20	ZO
Thallium	µg/L	<1,0	
Zink	μg/L	<10	ZO
Aussehen		klar	
-arbe		farblos	

^{**} bei Überschreitung ist die Ursache zu prüfen, (siehe LAGA TR Boden)

GBAGROUP ENVIRONMENT

Prüfbericht-Nr.: 2019P210244 / 1 BV Kennedyallee in Bonn

Angewandte Verfahren und Bestimmungsgrenzen (BG)

Parameter	BG	Einheit	Methode
Aussehen			organoleptisch 2
Farbe			
Angelieferte Probenmenge		kg	
Probenvorbereitung		1	DIN ISO 11464: 2006-07 ^a 2
Trockenrückstand	0,40		DIN ISO 11465: 1996-12° ₂
TOC	0,10	Masse-% TM	DIN EN 13137: 2001-12° 2
EOX	1,0	mg/kg TM	DIN 38414-17: 2017-01 ^a 2
Kohlenwasserstoffe	100	mg/kg TM	DIN EN ISO 16703: 2011-09°i,V.m. LAGA KW/04: 2009-12°
mobiler Anteil bis C22		mg/kg TM	DIN EN ISO 16703: 2011-09°i,V.m. LAGA KW/04: 2009-12°
Summe BTEX	1,0	mg/kg TM	DIN EN ISO 22155: 2016-07° 2
Summe LHKW	1,0	mg/kg TM	DIN EN ISO 22155; 2016-07° 2
Naphthalin	0,050	mg/kg TM	DIN ISO 18287: 2006-05° 2
Acenaphthylen	0,050	mg/kg TM	DIN ISO 18287: 2006-05° 2
Acenaphthen	0,050	mg/kg TM	DIN ISO 18287: 2006-05° 2
Fluoren	0,050	mg/kg TM	DIN ISO 18287: 2006-05 ^a ₂
Phenanthren	0,050	mg/kg TM	DIN ISO 18287: 2006-05° 2
Anthracen	0,050	mg/kg TM	DIN ISO 18287: 2006-05 ^a 2
Fluoranthen	0,050	mg/kg TM	DIN ISO 18287: 2006-05 ^a ₂
Pyren	0,050	mg/kg TM	DIN ISO 18287: 2006-05° 2
Benz(a)anthracen	0,050	mg/kg TM	DIN ISO 18287: 2006-05 ^a ₂
Chrysen	0,050	mg/kg TM	DIN ISO 18287: 2006-05° 2
Benzo(b)+(k)fluoranthen	0,050	mg/kg TM	DIN ISO 18287: 2006-05° 2
Benzo(a)pyren	0,050	mg/kg TM	DIN ISO 18287: 2006-05° 2
Dibenz(ah)anthracen	0,050	mg/kg TM	DIN ISO 18287: 2006-05° 2
Indeno(1,2,3-cd)pyren	0,050	mg/kg TM	DIN ISO 18287: 2006-05° 2
Benzo(g,h,i)perylen	0,050	mg/kg TM	DIN ISO 18287: 2006-05* 2
Summe PAK (EPA)	0,75	mg/kg TM	DIN ISO 18287: 2006-05° 2
PCB 28	0,0010	mg/kg TM	DIN ISO 10382: 2003-05 ^a ₂
PCB 52	0,0010	mg/kg TM	DIN ISO 10382: 2003-05° 2
PCB 101	0,0010	mg/kg TM	DIN ISO 10382: 2003-05° 2
PCB 153	0,0010	mg/kg TM	DIN ISO 10382: 2003-05° 2
PCB 138	0,0010	mg/kg TM	DIN ISO 10382: 2003-05° 2
PCB 180	0,0010	mg/kg TM	DIN ISO 10382: 2003-05° 2
PCB Summe 6 Kongenere	0,010	mg/kg TM	DIN ISO 10382: 2003-05° ₂
Arsen	1,0	mg/kg TM	DIN EN 16171: 2017-01° 5
Blei	1,0	mg/kg TM	DIN EN 16171: 2017-01° 5
Cadmium	0,10	mg/kg TM	DIN EN 16171: 2017-01° 5
Chrom ges.	1,0	mg/kg TM	DIN EN 16171: 2017-01° 5
Kupfer	1,0	mg/kg TM	DIN EN 16171: 2017-01° 5

Zuordnungswert in Klammern gilt nur in besonderen Fällen,

^{**} bei Überschreitung ist die Ursache zu prüfen, (siehe LAGA TR Boden)

Angewandte Verfahren und Bestimmungsgrenzen (BG)

Parameter	BG	Einheit	Methode
Nickel	1,0	mg/kg TM	DIN EN 16171: 2017-01° 5
Quecksilber	0,10	mg/kg TM	DIN EN 16171: 2017-01° 5
Thallium	0,30	mg/kg TM	DIN EN 16171: 2017-01° 5
Zink	1,0	mg/kg TM	DIN EN 16171: 2017-01° 5
Cyanid ges.	1,0	mg/kg TM	DIN ISO 17380: 2013-10 ^a ₅
Eluat-Einwaage		g	DIN EN 12457-4: 2003-01° 2
Eluiervolumen		mL	DIN EN 12457-4: 2003-01 ^a 2
Filtratvolumen		mL	DIN EN 12457-4: 2003-01° 2
pH-Wert			DIN EN ISO 10523: 2012-04° 2
Leitfähigkeit		µS/cm	DIN EN 27888: 1993-11° 2
Chlorid	0,60	mg/L	DIN EN ISO 10304-1: 2009-07° 22
Sulfat	0,50	mg/L	DIN EN ISO 10304-1: 2009-07* 22
Cyanid ges.	5,0	µg/L	DIN EN ISO 14403-2 (D3): 2012-10° 5
Phenolindex	5,0	μg/L	DIN EN ISO 14402: 1999-12 ^a 5
Arsen	0,50	μg/L	DIN EN ISO 17294-2: 2017-01° 5
Blei	1,0	µg/L	DIN EN ISO 17294-2: 2017-01° 5
Cadmium	0,30	µg/L	DIN EN ISO 17294-2: 2017-01° 5
Chrom ges.	1,0	µg/L	DIN EN ISO 17294-2: 2017-01° 5
Kupfer	1,0	μg/L	DIN EN ISO 17294-2: 2017-01° 5
Nickel	1,0	µg/L	DIN EN ISO 17294-2: 2017-01° 5
Quecksilber	0,20	µg/L	DIN EN ISO 17294-2: 2017-01° 5
Thallium	1,0	µg/L	DIN EN ISO 17294-2: 2017-01° 5
Zink	10	μg/L	DIN EN ISO 17294-2: 2017-01° 5

Zuordnungswert in Klammern gilt nur in besonderen Fällen,

^{**} bei Überschreitung ist die Ursache zu prüfen, (siehe LAGA TR Boden)